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Polynomial models are shown to simulate accurately the quadratic and cubic nonlinear inter-
actions (e.g. higher-order spectra) of time series of voltages measured in Chua’s circuit. For
circuit parameters resulting in a spiral attractor, bispectra and trispectra of the polynomial
model are similar to those from the measured time series, suggesting that the individual inter-
actions between triads and quartets of Fourier components that govern the process dynamics
are modeled accurately. For parameters that produce the double-scroll attractor, both mea-
sured and modeled time series have small bispectra, but nonzero trispectra, consistent with
higher-than-second order nonlinearities dominating the chaos.

1. Introduction

Polynomial models for nonlinear time series repro-
duce aspects important to the dynamics of the
original process from which the model parameters
are estimated [Aguirre & Billings, 1995; Çinar,
1995; Letellier et al., 1997]. Although comparing
model time series with original data for systems
sensitive to initial conditions is difficult, statisti-
cal and bulk properties of polynomial models (such
as phase spaces, Poincaré sections, bifurcation dia-
grams, fixed points, and Lyapunov exponents) can
be compared with those of the original data. Here,
it is shown that polynomial models estimated from
time series sampled from realizations of Chua’s cir-
cuit [Chua et al., 1993] have higher-order spectra

[Hasselmann et al., 1963; Elgar & Chandran, 1993]
that are similar to those from the measured time
series.

The polynomial (NARMAX) model y(k),
where k is discrete time (lag) is given by [Leontaritis
& Billings, 1985]

y(k) = f l[y(k − 1), . . . , y(k − ny),
u(k − d), . . . , u(k − nu),

e(k), . . . , e(k − ne)] (1)

where f l is a polynomial of degree l, the input u(k)
and output y(k) are discretely sampled time series
of length N , the maximum lags considered for the
output, input, and noise terms are ny, nu, and ne,
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respectively, and d is the delay measured in sam-
pling intervals. Uncertainties, noise, and unmod-
eled dynamics are accounted for by e(k). Given
a time series, polynomial coefficients can be es-
timated by minimizing errors between model and
data [Billings et al., 1989].

Chua’s circuit is described by a set of three ordi-
nary differential equations [Chua et al., 1986, 1993;
Madan, 1993]

C1
dvC1

dt
=

1

R
(vC2 − vC1)− g(vC1)

C2
dvC2

dt
=

1

R
(vC1 − vC2) + iL

L
diL
dt

= −vC2

(2)

where vC1 and vC2 are the voltages across capaci-
tors C1 and C2, respectively, and iL is the current
flowing through the inductor. The resistance (v/i)
is given by R and g(·) is a piecewise-linear func-
tion relating the current in the nonlinear resistor
NR (g(vNR)) to the voltage (vNR)

g(vNR) = m0vNR + 0.5(m1 −m0)

× (|vNR +Bp| − |vNR −Bp|) . (3)

The slope of the current versus voltage curve
changes from m0 to m1 when the voltage changes
in absolute value from greater than Bp to less than
Bp. Here, the system is moved into different chaotic
regimes by changing the resistance R, while the
other components remain fixed.

The nonlinear interactions between triads and
quartets of Fourier components of time series pro-
duced by numerical implementations of Chua’s cir-
cuit (2) are shown by higher-order spectra [Elgar &
Chandran, 1993]. The auto bispectrum is defined
formally as the Fourier transform of the third-order
correlation function of the time series [Hasselmann
et al., 1963]. The discrete bispectrum, appropri-
ate for sampled data, is [Haubrich, 1965; Kim &
Powers, 1979]

B(f1, f2) = E[Af1Af2A
∗
f1+f2

] (4)

where Afi is the complex Fourier component of the
time series at frequency fi, asterisk is complex con-
jugation, and E[·] is the expected-value, or average,
operator.

If the three Fourier components in the triple
product on the right-hand side of (4) are inde-
pendent of each other (e.g. if they have random

phase relationships such as a time series with Gaus-
sian statistics), the bispectrum is zero. It is con-
venient to recast the bispectrum into its normal-
ized (by the power at each of the three frequencies
in the triad) magnitude, called the squared bico-
herence, b2(f1, f2), which represents the fraction
of the power of the triad of Fourier components
(f1, f2, f1 +f2) that is owing to quadratic coupling
[Kim & Powers, 1979].

Similar to the bispectrum, the auto trispectrum
is defined formally as the Fourier transform of the
fourth-order correlation, and the discrete trispec-
trum is

T (f1, f2, f3) = E[Af1Af2Af3A
∗
f1+f2+f3

] . (5)

The normalized magnitude of the trispectrum is
called the squared tricoherence, t2(f1, f2, f3), and
is a measure of the fraction of the power of the quar-
tet of Fourier components (f1, f2, f3, f1 + f2 + f3)
that is owing to cubic nonlinear interactions. Fur-
ther details, additional references, and tutorial ex-
amples of bispectra and trispectra can be found in
[Elgar & Chandran, 1993].

2. Results

Time series of voltage vC1 measured from a realiza-
tion of Chua’s circuit [Chua et al., 1993] for the spi-
ral [Thompson & Stewart, 1986] and double-scroll
[Chua et al., 1986] attractors were used to estimate
the coefficients (given in the Appendix) of the non-
linear polynomial models (1). The circuit parame-
ters used during the experiments were C1 = 11 µF,
C2 = 45 µF, L = 20 H, Bp = 1.1 ± 0.2 V,
m0 = −0.37± 0.04 mS, and m1 = −0.68± 0.04 mS.
For the spiral attractor (sampled at 12 µs) R =
1.67 kΩ and for the double scroll (sampled at 15 µs)
R = 1.64 kΩ. The high inductance (achieved by im-
plementing an OPAMP-based circuit that mimics
the dynamics of an inductor) reduces the oscillation
frequency from O(100 kHz) to O(1 kHz), thus facil-
itating A/D conversion and recording of the data.
Polynomial model parameters (Appendix) were es-
timated from 8192 values of the voltage measured
after initial transients had decayed.

Both the measured and modeled spiral attrac-
tors have a relatively narrow power spectrum dom-
inated by a primary peak fp = 2.92 Hz and
its harmonics [2fp = 5.85 and 3fp = 8.78 Hz,
Fig. 1(a)]. The model bicoherence [Fig. 1(c)] indi-
cates quadratic coupling between the primary and
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Fig. 1. (a) Power spectra of measured (solid curve) and modeled (dashed curve) voltage vc1 from Chua’s circuit when the
system exhibits a spiral attractor. Contours of bicoherence of (b) measured and (c) modeled voltage vc1 . The units of power
are arbitrary and the frequencies of the labeled power spectral peaks (panel a) are (a) 2.92, (b) 5.85, and (c) 8.78 Hz. The
minimum contour plotted is b = 0.85, with additional contours every 0.1. There are 32 degrees of freedom.

its harmonics [e.g. the horizontal band of contours
for f2 ≈ 3 Hz, Fig. 1(c)], similar to that observed
in the measurements [Fig. 1(b)]. Quadratic interac-
tions involving Fourier components with frequencies
less than fp are significant in time series from both
the data [1 < f2 < 3, f1 ≈ 3 Hz, Fig. 1(b)] and
the model [Fig. 1(c)]. Tricoherence spectra for the
measured time series [Figs. 2(a)–2(c)] are similar to
those from the polynomial model [Figs. 2(d)–2(f)].
Cubic interactions between quartets of Fourier com-
ponents are significant for the spiral attractor, sug-
gesting higher-order coupling between motions with
frequencies fp and its harmonics. The coupling
between the primary and its harmonics, as indi-
cated by the bicoherence [Figs. 1(b) and 1(c)] and
tricoherence (Fig. 2) spectra, suggest that both
quadratic and cubic interactions (as occur in the

spiral attractor) are reproduced well by the polyno-
mial model estimated from 8192 values of the volt-
age measured in Chua’s circuit.

The higher-order spectral coherences from the
model time series are slightly higher than those from
the data, possibly because an infinite-order polyno-
mial is required to reproduce exactly the piecewise-
linear current in the nonlinear resistor (3), and thus
the second- and third-order polynomial model used
here may have stronger quadratic and cubic cou-
pling than observed in the actual circuit. Noise in
the measured circuit may also reduce higher-order
spectral values relative to those from the model time
series.

The power spectrum for the measured double-
scroll attractor (Fig. 3) is broader than the spi-
ral attractor [Fig. 1(a)], with a relatively small
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Fig. 2. Tricoherence spectra of the measured voltage vc1 from Chua’s circuit (a)–(c) and from a polynomial model of the
circuit (d)–(f) when the system exhibits a spiral attractor. The constant sum frequencies are (a) and (d) f4 = 2.92, (b) and
(e) f4 = 5.85, and (c) and (f) f4 = 8.78 Hz. (See [Elgar & Chandran, 1993] for a description of the plot format.) The minimum
contour plotted is t = 0.61, with additional contours every 0.11. There are 32 degrees of freedom.

Fig. 3. Power spectra of measured (solid curve) and modeled
(dashed curve) voltage vc1 from Chua’s circuit when the sys-
tem exhibits the double-scroll attractor. The units of power
are arbitrary and the frequencies of the labeled power spec-
tral peaks are (a) 3.38, (b) 6.38, and (c) 9.37 Hz. There are
32 degrees of freedom.

primary peak (fp = 3.38 Hz) and more energetic
low-frequency motions. The polynomial model
shows similar power spectral features (Fig. 3).
There are no statistically significant bicoherences
(not shown) in the measured Chua circuit or in the
polynomial model, indicating that the nonlineari-
ties for the double-scroll are not quadratic. This
result is consistent with cluster analysis of simi-
lar attractors [Aguirre et al., 1997; Aguirre, 1997].
As shown by the tricoherence spectrum (Fig. 4),
many of the Fourier components of the measured
double-scroll system are cubically coupled to each
other, and furthermore, interactions involving low
frequency components are important to the dy-
namics (i.e. there are many cubically coupled tri-
ads involving low frequencies, e.g. f2 < 2 Hz in
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Fig. 4. Tricoherence spectra of the measured voltage vc1 from Chua’s circuit (a)–(c) and from a polynomial model of the
circuit (d)–(f) when the system exhibits a double-scroll attractor. The constant sum frequencies are (a) and (d) f4 = 3.38,
(b) and (e) f4 = 6.38, and (c) and (f) f4 = 9.37 Hz. The minimum contour plotted is t = 0.61, with additional contours every
0.11. There are 32 degrees of freedom.

Figs. 4(a)–4(c). The tricoherence spectrum of
the polynomial model shows similar features
[Figs. 4(d)–4(f)], suggesting the measured cubic
coupling between the primary and its harmonics is
reproduced well by the polynomial model.

3. Conclusions

Higher-order spectral analysis suggests that poly-
nomial models of Chua’s circuit have quadratic and
cubic nonlinear interactions similar to those ob-
served in the underlying time series from which
the model parameters are estimated. The results
presented here agree with the cluster analyses of
chaotic attractors produced by the Chua circuit,
and suggest that higher-order spectra can aid in the
structure selection of polynomial models.
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Appendix

Models were selected based on (i) stability,
(ii) geometry of the reconstructed attractor (vi-
sual analysis), (iii) largest Lyapunov exponent, and
(iv) correlation dimension. Unstable models and
stable models with orbits in phase space differing
visually from orbits produced by the measured time
series were rejected. Similarly, models with largest
Lyapunov exponent and correlation dimension dif-
fering significantly from those of the measured time
series were rejected. Polynomial models not re-
jected by these criteria that were used to recon-
struct the spiral and double-scroll attractors are
given, respectively, by

y(k) = 1.0492699 × 10−3 + 3.8820073y(k − 1)− 5.3586346y(k − 2) + 3.2272437y(k − 3)

− 6.7316594 × 10−1y(k − 4)− 1.0908277y2(k − 1) + 1.8120221y(k − 1)y(k − 2)

+ 1.2853315 × 10−1y2(k − 2)− 5.3797216 × 10−2y3(k − 6)

− 2.4424720y2(k − 3) + 3.4350846y(k − 3)y(k − 4)− 1.3226760y2(k − 4)

− 5.7482072 × 10−1y(k − 1)y(k − 4)− 2.7943574 × 10−2y2(k − 4)y(k − 5)

+ 7.0459715 × 10−3y3(k − 1) + 8.3729350 × 10−2y(k − 5)y2(k − 6)

+
19∑
i=1

θ̂iξ(k − i) + ξ(k) , (A.1)

and

y(k) = 3.4100533y(k − 1)− 4.1012259y(k − 2) + 2.1424854y(k − 3)

− 5.5119040 × 10−1y(k − 4)− 1.5660850y3(k − 1) + 1.2719477 × 10−1y(k − 5)

+ 3.7094852y2(k − 1)y(k − 2)− 7.1252117 × 10−1y(k − 1)y(k − 2)y(k − 3)

+ 7.2200953 × 10−1y2(k − 2)y(k − 4)− 4.9131975 × 10−2y3(k − 5)

+ 2.3934928 × 10−1y(k − 3)y2(k − 5)− 1.1878823 × 10−1y(k − 2)y(k − 3)y(k − 5)

− 1.7485641y(k − 1)y2(k − 2)− 3.1117395 × 10−1y2(k − 1)y(k − 4)

− 1.7004093 × 10−1y2(k − 4)y(k − 5) +
19∑
i=1

θ̂iξ(k − i) + ξ(k) , (A.2)
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where the summation represents the moving aver-
age part of the model, fitted during parameter esti-
mation to avoid bias (but not used to produce the
time series analyzed here), and ξ(k) are the residu-
als (prediction errors). The terms selected explain
the maximum amount of variance given the model
constraints. The first 8192 values of each model
simulation were discarded to avoid transients, and
time series from the next 8192 values were used
in Figs. 1–4. The power and higher-order spec-
tra are not affected significantly by changes in the

processing details (e.g. using more or fewer values,
obtaining statistical stability with frequency merg-
ing or ensemble averaging), nor by using differ-
ent sets of 8192 values (after the transient). The
largest Lyapunov exponents for the spiral attrac-
tor are 1.31 × 10−2 and 1.63 × 10−2 for data and
model (A.1), respectively. The largest Lyapunov
exponents for the double-scroll attractor are 3.30×
10−2 and 2.84 × 10−2 for data and model (A.2),
respectively.


