[EEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 40, NO. 10, OCTOBER 1993 689

Higher Order Spectral Analysis of Chua’s Circuit

Steve Elgar, Member, IEEE, and Vinod Chandran, Member, IEEE

Abstract—Higher order spectral analysis is used to investigate
nonlinearities in time series of voltages measured from a realiza-
tion of Chua’s circuit. For period-doubled limit cycles, quadratic
and cubic nonlinear interactions result in phase coupling and
energy exchange between increasing numbers of triads and quar-
tets of Fourier components as the nonlinearity of the system is
increased. For circuit parameters that result in a chaotic, Rossler-
type attractor, bicoherence and tricoherence spectra indicate that
both quadratic and cubic nonlinear interactions are important to
the dynamics. When the circuit exhibits a double-scroll chaotic
attractor the bispectrum is zero, but the tricoherences are high,
consistent with the importance of higher-than-second order non-
linear interactions during chaos associated with the double scroll.

1. INTRODUCTION

INCE THEIR introduction 30 years ago [4], higher order
Sspectral techniques, which isolate nonlinear interactions
between the Fourier components of a time series, have been
used to study many nonlinear systems (see [2] for a recent
review). The purpose of the present study is to investigate with
higher order spectra the nonlinear interactions between triads
and quartets of Fourier components of voltages measured in
the Chua circuit as it undergoes a period-doubling cascade to
chaos.

The auto bispectrum is formally defined as the Fourier
transform of the third-order correlation function of the time
series [4]. The discrete bispectrum, appropriate for sampled
data, is [5], [7]

B(f1, f2) = ElAfJ ‘4f2‘4}1+f2] ()

where Ay, is the complex Fourier component of the time series
at frequency f;, asterisk is complex conjugation, and E[-] the
expected-value, or average, operator.

From (1), the bispectrum is zero if the average triple product
of Fourier coefficients is zero. This occurs if the Fourier
components are independent of each other, i.e., for the random
phase relationships between Fourier modes in a linear process,
such as a time series with Gaussian statistics. It is convenient
to recast the bispectrum into its normalized (by the power
at each of the three frequencies in the triad) magnitude,
called the squared bicoherence, b?(f1, f2), which represents
the fraction of the power of the triad of Fourier components
(f1, f2, f1 + f2) that is owing to quadratic coupling [7].
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Similar to the bispectrum, the auto trispectrum is formally
defined as the Fourier transform of the fourth-order correlation,
and the discrete trispectrum is

T(fh f2: f3) = E[AflAsz}1+fz+fz;]’ )

The normalized magnitude of the trispectrum is called the
squared tricoherence, t2(f1, fa, f3) and is a measure of the
fraction of the power of the quartet of Fourier components
(f1, f2, f3, f1 + fo + f3) that is owing to cubic nonlinear
interactions. Further details, additional references, and tutorial
examples of bispectra and trispectra can be found in [2].

II. HIGHER ORDER SPECTRA OF CHUA’S CIRCUIT

Chua’s circuit is described by a set of three ordinary
differential equations [8], [1], [11]

dv
= dfl = G(Ucz - Ucl) - g(vc1)
dvc. .
Cy VG _ G(ve, —ve,) +iL
dt
dig,
L—= = —ug, 3
7 JoR 3)

where ve, and ve, are the voltages across capacitors C and
C, respectively, and iz, is the current flowing upwards through
the inductor. G denotes the conductance of a nonlinear resistor
and g(-) is a piecewise-linear function relating the current in
the resistor (g(vg)) to the voltage (vg)

g(vg) = movg +0.5(m1 —mo)(|vrg + Byl — lvr — Bp|). 4

The slope of the current versus voltage curve changes from
g to m, when the voltage changes in absolute value from
greater than B, to less than B,,. The implementation of Chua’s
circuit used in the present study is discussed in [6], [3].
The nonlinearity of the system is increased by increasing
the capacitance Cj, while the other components remain fixed
(here, C, = 178.5 nF, R = 1.001 kQ, L = 12.44 mH,
B, =1V, my=-0.712, and m; = —1.14). Five time series
of the voltage waveform wvc,, including a period-doubling
sequence and two chaotic states (Rossler [10] and double-
scroll attractors [1], [9]), were examined.

The harmonic structure of the limit cycles is clearly dis-
played in the power spectra (Fig. 1). For period-1 motion,
the spectrum is dominated by a primary spectral peak with
f = 2.5 kHz, and its higher harmonics. As C' is increased,
the subharmonic (f = 1.25 kHz) is excited (period-2 motion,
Fig. 1(b)) and, owing to nonlinear interactions, the spectrum
contains peaks at frequencies corresponding to sum interac-
tions of the subharmonic, the primary, and their harmonics.
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Fig. 1. Power spectra of voltage v, measured from Chua’s circuit. (a)
Period-1 limit cycle, (b) period-2 limit cycle, and (c) period-4 limit cycle.
The corresponding values of the capacitance, C'; are 17.2, 17.5, and 16.9 nF,
respectively. The units of power are arbitrary. (See [2] for data processing
details.)

As C; is increased further, another period-doubling occurs
(f = 0.625 kHz is excited, period-4 motion), and the power
spectrum (Fig. 1(c)) contains many peaks, corresponding to
the two subharmonics, the primary, and their combination
tones.

The quadratic and cubic interactions between triads and
quartets of Fourier components for the limit cycles of Chua’s
circuit are isolated by bicoherence and tricoherence spec-
tra, respectively (Figs. 2 and 3). For the period-1 case, the
bicoherence spectrum clearly shows the quadratic coupling
between motions at the primary spectral peak frequency and its
harmonics (f; = 2.5, fo = 2.5 and f; = 5.0, fo = 2.5 kHz,
Fig. 2(a)). The high bicoherence values associated with fa=
2.5 kHz (Fig. 2(a)) indicate nonlinear energy transfer from
the primary to higher-frequency components. The quadratic
interactions are restricted to triads of Fourier components
that include the primary and its harmonics. Cubic interactions
also occur for period-1 motion, and the tricoherence spectrum
indicates that there is strong coupling among the quartet of
components consisting of f; = fo = fs =25and f; = 7.5
kHz (Fig. 3(a)), as well as between the primary and higher
harmonics (e.g., f1 = 5, fo = 2.5, f3 = 2.5, f4 = 10 kHz,
see fig. 11 of [2]).

The power spectrum for the period-2 case (Fig. 1(b))
shows narrow peaks between the harmonics of the primary
peak. The corresponding bicoherence spectrum (Fig. 2(b))
shows the coupling between motions at the primary peak
frequency (f = 2.5 kHz), its harmonics, the period-doubled
frequency (subharmonic, f = 1.25 kHz), and its harmonics.
Quadratic interactions between oscillations at the primary and
the period-doubled subharmonic are transferring energy into
higher harmonics. Similarly, there are strong cubic interactions
between the subharmonic and the primary (Fig. 3(b)), as well
as between the subharmonic and higher frequency motions
(not shown, see [2]).

For period-4 motion an additional subharmonic is excited
(f = 0.625 kHz), and the power (Fig. 1(c)), bicoherence
(Fig. 2(c)), and tricoherence (Fig. 3(c)) spectra contain peaks
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Fig. 2. Bicoherence spectra of voltage v, measured from Chua’s circuit.
(a) Period-1 limit cycle, (b) period-2 limit cycle, and (c) period-4 limit cycle.
Contours indicate quadratic phase coupling between motions with frequencies
f1. f2. fi + f2. The minimum contour plotted is b = 0.2, with additional
contours every Q.1.
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Fig. 3. Tricoherence spectra of voltage v, measured from Chua’s circuit.
(a) Period-1 limit cycle, (b) period-2 limit cycle, and (c) period-4 limit cycle.
In each panel, contours indicate cubic phase coupling between motions with
frequencies f1. f2. f3. fa = fi + f2 + f3, where fa = 7.5 kHz. The
minimum contour plotted is ¢ = 0.2 with additional contours every 0.1.

associated with the primary (f = 2.5 kHz), both subharmonics
(f = 1.25 and f = 0.625 kHz), and all their combination
tones. The higher order spectra indicate that these interactions
are quadratic and cubic, and delineate precisely which Fourier
components are interacting with each other.

Time series corresponding to the Rossler attractor exhibit
similarities to, and differences from, the period-doubling se-
quences. The Rossler-like attractor is chaotic and has a fairly
broad power spectrum (Fig. 4(a)) with only remnants of the
sharp primary and harmonic peaks of the period-doubled cases
(Fig. 1). However, as indicated by the bicoherence (Fig.
4(b)) and tricoherence (Fig. 5) spectra, both quadratic and
cubic interactions are still important. Motions corresponding
to the remnant of the primary peak (f; = 2.5 kHz) are
quadratically coupled to both higher frequencies (horizontal
band of contours at fo = 2.5 kHz in Fig. 4(b)) and to lower
frequencies (vertical band of contours at f; = 2.5 kHz).
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Fig. 4. (a) Power spectrum and (b) contours of bicoherence of voltage
ve; measured from Chua’s circuit when the system exhibits a Rossler-like
attractor. C'; = 16.6 nF. The units of power are arbitrary and the minimum
contour plotted is b = 0.6 with additional contours every 0.1.
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Fig. 5. Tricoherence spectra of voltage v, measured from Chua’s circuit
when the system exhibits a Rossler-like attractor. The constant sum frequen-
cies are (a) fq4 = 5.0, (b) f4.= 7.5, and (¢) f4 = 10.0 kHz. The minimum
contour plotted is ¢ = 0.2 with additional contours every 0.1,

Weaker quadratic interactions occur between motions at the
harmonics (f = 5.0 and f = 7.5 kHz) of the primary spectral
peak and both higher and lower frequency motions. Bicoher-
ences are statistically significant for many frequency triads,
indicating that quadratic nonlinear interactions occur between
nearly all the frequency components of the Rdssler system.
Cubic nonlinear interactions (Fig. S), although individually
weaker than the quadratic interactions, are also important in the
Rossler attractor and occur between nearly all the components
of the system.

Unlike the period-doubled and Réssler attractors, the double
scroll is not dominated by quadratic interactions. The double-
scroll attractor is characterized by a very broad power spec-
trum (not shown, see [2]), with only a vestige of the primary
peak and much more energetic low-frequency motions. There
are no statistically significant bicoherences, indicating that the
nonlinearities for the double scroll are not quadratic. Higher-
than-second-order spectra are required to isolate the individual
interacting Fourier components for the double scroll. The
tricoherence spectrum (not shown, see [2]) demonstrates that
many of the Fourier components of the double-scroll system
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are cubically coupled to each other, and further suggests
that interactions involving low frequency components are
important to the dynamics of the double scroll (i.e., there
are many cubically coupled triads involving low frequencies).
Similar importance of nonlinear interactions involving very
low frequency components has been observed in other chaotic
systems.

I1I. CONCLUSIONS

As Chua’s circuit undergoes a period-doubling sequence
to chaos, quadratic and cubic nonlinear interactions cou-
ple, and transfer energy between, triads and quartets of the
Fourier components of the system. The individual interactions
are isolated by bicoherence and tricoherence spectra, which
show increasing numbers of phase coupled components as the
nonlinearity of the system is increased. For period-doubled
limit cycles, motions at the frequency corresponding to the
power spectral peak frequency and the many combinations of
subharmonics and super harmonics are nonlinearly coupled.
When the system becomes chaotic the power spectrum broad-
ens, but in the case of the Rossler attractor, quadratic and
cubic nonlinear interactions remain important. Motions at the
primary frequency and its harmonics are coupled to motions
at many other frequencies. For the double-scroll attractor the
system no longer contains quadratic nonlinear interactions, and
bicoherence values are essentially zero. However, tricoher-
ence spectra demonstrate the continued importance of cubic
nonlinear interactions.
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