IC design for spread spectrum communication exploiting chaos

Manuel Delgado-Restituto, Matias Liñán and Angel Rodriguez-Vázquez
Centro Nacional de Microelectrónica (CNM)
Ed. CICA, Avda. Reina Mercedes s/n
41012 - Seville, SPAIN.

Abstract - This paper presents a 2.4μm CMOS IC prototype which includes a programmable chaotic generator and some interface circuitry for chaotic encryption. It realizes a member of the family of the canonical Chua’s state equation. It exhibits several bifurcation parameters by changing a few external bias currents and can be used for the chaotic encryption of audio signals.

I. Introduction

This paper follows a previous paper of the authors in [1]. There the fundamentals to design chaotic oscillators using Gm-C techniques were established and a IC prototype of the Chua’s circuit built. It was able to generate a number of chaotic oscillators by the first time using a fully monolithic continuous time IC. However, its controllability was rather tricky. Hence, it was neither convenient for experimental demonstration of chaotic phenomena nor for chaotic encryption.

This paper presents a new chaotic CMOS chip also in 2.4μm technology. The new chip has much better controllability than the previous. We present its architecture and a number of measurements to illustrate its performance.

II. Chip Architecture

Fig.1 shows the chip architecture which comprises the following blocks:
• A core Gm-C chaotic oscillator.
• A Gm-C reference integrator.
• Three voltage buffers.

As Fig.1 illustrates, the chip has 14 pins grouped as follows:
• 2 supply voltages.
• 1 analog ground.
• 3 control inputs (low impedance).
• 2 tuning pins.
• 3 unbuffered output pins (one per state variable).
• 3 buffered output pins (one per state variable).

As stated in [1], the design of the monolithic Chua’s oscillator is reduced to transistor level implementation of one single transconductance amplifier of \(g \) gain and a nonlinear transconductor. The transconductor unit has a folded-cascode structure, whose input stage presents a linearization scheme through source degeneration [2] characterized by an ample range of linearity in the voltage-current conversion, low systematic offset, and very high output resistance. The transconductance value is controlled by the biasing current \(I_{cont1} \) applied to pin \(cont_1 \). The nonlinearity of the characteristics is less than 1.0% error in the input voltage ranging from \(-1.5 V \) to \(1.5 V \), assuming a symmetrical biasing of \(\pm 2.5 V \). Obviously, proper operation of the circuit implies that the chaotic attractor be comprised inside this range.

The nonlinear transconductor has been implemented via the cascaded connection of a unit transconductor and a current-mode PWL block, as explained in [1] and [3]. Fig.2(a) and (b) show the variation of the nonlinear characteristics for different slopes \(s_0 \) and \(s_1 \) of the central and outer pieces, respectively. They can be externally controlled through biasing currents \(I_{cont2} \) and \(I_{cont3} \) applied to pins \(cont_2 \) and \(cont_3 \). The values of these currents can be regarded as the cryptographic key for the secure communication scheme.

III. Chip Measurements

Figs.6 and 7 show a bifurcation sequence obtained by changing the biasing current \(I_{cont2} \). A double scroll is obtained through a period-doubling route to chaos. A Rossler-like chaotic attractor and several periodic windows are observed as well.

Fig.3 and Fig.4 demonstrate the feasibility of
chaotic synchronization between two of the manufactured IC prototypes. Fig.3(a) considers a linear diffusion coupling between equivalent state variables of the two chaotic oscillators [4]. It shows the phase plots obtained from a y-coupled experimental set-up, built in practice by inserting an R_y linear resistor between the y terminals of both prototypes (see Fig.1). It was found that whenever the coupling resistance is $R_y < 27 \Omega$, the (x_1, x_2) phase plot follows a nearly perfect straight line, thus confirming synchronization in spite of the chaotic behavior exhibited by the oscillators, as the (x_1, z_1) phase plot illustrates. A similar set-up was built by inserting an R_x linear resistor between the x terminals of the oscillators, thus leading to an x-coupled system. In this case, trajectories of both circuits approach each other asymptotically if $R_x < 745 \Omega$, for the same internal configurations as before. A z-coupled configuration was also built in the laboratory, but, in this case, the system exhibits sporadic losses of synchronization.

Fig.3(b) considers a drive-response scheme as originally proposed by Pecora and Carroll [4]. It shows the phase plots obtained from a x-drive experimental set-up, built by inserting a voltage buffer from the x terminal of the driving prototype to the same terminal at the receiving system. As can be seen from the (y_1, y_2) phase plot, nearly ideal synchronization is obtained. The same conclusion also applies when considering a y-drive scheme, but not for a z-

FIGURE 3. (a) y-coupled synchronization results. Hor. axis: x_1, Vert. axis: z_1 at the top, z_2 at the bottom. (b) x-drive synchronization results. Hor. axis: y_1, Vert. axis: y_2 at the top, x_1 at the bottom.

Drive configuration as predicted by theory [4]. Fig.4 illustrates the performance of the whole secure communication scheme. Input signal (Fig.4(a)) consists of a segment of speech. The worst-case signal to noise ratio of the recovered signal (Fig.4(b)) is greater than +40dB (this occurs at very low frequencies) with less than -0.2dB loss of the input signal power. At higher frequencies, the signal-to-noise ratio rises up to +60dB, while retaining similar losses at the receiver. As can be seen from Fig.4, the transmitted signal (Fig.4(c)) keeps no resemblance to the information content.

IV. References

FIGURE 5. Experimental Lissajous figures (projections onto the (x, y) and (x, z) planes), and power spectra for:
(a) $I_{\text{cont}2} = 1.0 \, \mu A$; (b) $I_{\text{cont}2} = 1.05 \, \mu A$; (c) $I_{\text{cont}2} = 1.125 \, \mu A$; (d) $I_{\text{cont}2} = 1.2 \, \mu A$; (e) $I_{\text{cont}2} = 1.35 \, \mu A$.
FIGURE 6. Experimental Lissajous figures (projections onto the (x, y) and (x, z) planes), and power spectra for:
(a) $I_{cont2} = 1.52 \, \mu A$; (b) $I_{cont2} = 1.67 \, \mu A$; (c) $I_{cont2} = 1.7 \, \mu A$; (d) $I_{cont2} = 1.912 \, \mu A$; (e) $I_{cont2} = 1.97 \, \mu A$.
181