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Fig. 6. Simulation result of output pulse in L = 2 H case with a five-section
uniform-line PEN when tg equals 0.566 ms.

no difference between the two simulation results obtained with the
three-section and the five-section uniform-line PEN’s.

VI. CoNcLUsION

A technique of controlling rapidly the output peak voltage of a line-
type pulse modulator has been proposed, and the analytical results of
the circuit have also been given. The results calculated in the two
cases with different control ranges of the output peak voltage and the
results of simulation in the two cases represent well the feasibility of
this technique. The technique of rapidly changing pulse voltage is also
applicable to the low voltage pulse circuits such as transistor pulse
circuits. In a high power pulse modulator in which the impedance
of a PFN is generally selected to be low to obtain large current, the
additional switch tube cannot play a part of the thyratron because of
its relatively high internal resistance. However, in a low voltage pulse
circuit, the additional switch transistor can do the work of both the
“thyratron” transistor (e.g., SCR) and the additional switch transistor,
because relatively high impedance of a PEN is acceptable. So, in
such an application, the thyratron transistor can be removed from the
circuit.

Investigating the effects on the circuit operation of nonlinearity of
the charging element which is usually encountered in the iron-core
inductor is a subject for future study.

Since the circuit performance of controlling peak voltages is limited
by the handling voltage capability of the available switch tube, it is
necessary to develop effective high voltage switching devices in order
to respond to various design demands.
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Synchronization of Chua’s Circuits with
Time-Varying Channels and Parameters

Leon O. Chua, Tao Yang, Guo-Qun Zhong, and Chai Wah Wu

Abstract—In this brief, we study the use of adaptive controllers to main-
tain the synchronization of two Chua’s circuits with time-varying channel
and time-varying parameters. Both simulation results and experimental
results are provided to verify the operation of the designs.

I. INTRODUCTION

Because of its potential applications to spread spectrum commu-
nication, the synchronization of chaotic systems has been studied
extensively both in theory and in experiments [1]-[17]. However,
in almost all of the previous works, the driving and the driven
chaotic systems are assumed to be identical and their parameters
are assumed to be time-invariant. The channel through which the
transmitted signal is transmitted is also assumed to be time-invariant.
The above assumptions limit its applicability in practical systems.

So far, all chaos-based communication systems use chaotic systems
both as transmitters and receivers. The transmitter generates a chaotic
signal which is used to encode the message signal in different ways,
for example: chaotic masking [1]—[3], parameter modulation [8], [9]
and state variable modulation [5], [6], [17]. Chaotic masking is not
very secure if the message is directly added onto the chaotic masking
signal. The authors of [4] and [19] had demonstrated that the smaller
the message signal is, the lower the degree of security will be. Chaotic
switching is the easiest form of parameter modulation and it was also
shown to have a low degree of security [20] if the parameters of the
transmitter are not chosen carefully. State variable modulation uses
a functional of the message signal to modulate the state variables
of the transmitter and hides the message signal, which is usually a
narrow-band signal, into the broad-band chaotic signal.
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Fig. 1. The synchronization scheme of two Chua’s circuits by using vy in
a unidirectional driving configuration.

The transmitted signal is then transmitted to the receiver, which is
an identical chaotic system. The transmitted signal will synchronize
the receiver to the transmitter to obtain a replica of the chaotic
masking signal.

Most of the methods presented so far require that the parameters
of the transmitter and the receiver are identical, and the channel is
time-invariant. Qur experimental results indicate that a time-varying
channel can desynchronize the system.

In this brief, we use adaptive controllers to maintain the synchro-
nization between the transmitter and the receiver when the parameters
of the transmitter are time-varying or the channel is memoryless and
time-varying. We used Chua’s circuits as our driving and driven sys-
tem. The feedback into the adaptive controller is the synchronization
error, which measures the degree of de-synchronization between the
transmitter and receiver.

The organization of this brief is as follows. In Section II, adaptive
controllers are presented which compensate the time-varying channel
gain. In Section III, adaptive controllers are presented which compen-
sate the time-varying parameters. In Section IV, experimental results
are presented.

II. ADAPTIVE CONTROLLERS FOR
TIME-VARYING CHANNEL COMPENSATION

In this brief, all the results are based on Chua’s circuit [18],
[21], which exhibits a family of chaotic attractors and can be easily
implemented in hardware. Chua’s circuit consists of a linear inductor
L, a linear resistor R, two linear capacitors C'; and C; and a nonlinear
resistor—the Chua’s diode N . The state equations for Chua’s circuit
are given by

&1 = A[G(vs = v1) = f(v1)]
L2 = £-[G(v1 — v2) + ig] )

%3‘ = f[—v2 — Rois]

where v, vo and i3 are the voltage across C1, the voltage across Ca
and the current through L, respectively. We set G = %. The term
Rois is added to account for the small resistance of the inductor in
the physical circuit. f(v1), the piece-wise linear v — 4 characteristic
of the Chua’s diode, is given by

F@1) = Goun + 5(Go = Go)lloa + Bl = [~ E)

where F is the breakpoint voltage of the Chua’s diode.
We use the synchronization scheme shown in Fig. 1 [12]. The
state equations are given by

& = 4G (o2 —v1) = f(0)]
dva — CLz[G('Ul — vg) + i3] (3)
dig — +[—v2 — Rots)

W = (G5 — 1) = f(0n) + Ki(s(t) — 0)]

"7} = &[G(B1 - #2) + 1] @)
%3' = %[—f}z - Rgig]

where s(t) = Kc(t)v,, and K(t) is the time-varying gain of the
channel. Constant unity gain channel corresponds to K.(t) = 1.

In this section we study how to compensate for the time-varying
channel gain K.(¢). In the driven system, we construct an adaptive
gain K, (t) such that K .(¢t)K,(t) — 1 as ¢ — oo to maintain the
synchronization. Then the driven system should be rewritten as

&[G (2 = 91) = £(51) + K1 (K (8)s(t) = 7))
L2 = L[G(i1 — 52) + is] &)

&t = L~ — Rok]

oy

The dynamics of K (t) is given by one of the following adaptive
controllers:
Controlier #1

K (t) = =k (K- (O)]s(t)] = |91]) ©)
Controller #2
Ko (t) = —ky (K (8)s°(t) — s(t)dy) ©)

Controller #3

9%,

K. (t) = —k1sgn< 5 Kr)(Kr(t)s(t) — %)
= —kisgn(K1s(t)) (K- (t)s(t) — 71). ®

Controller #2 is similar to the LMS adaptive controller and controller
#3 is a simple form of the adaptive controilers discussed in [22] and
[23].

In our simulations, the parameters of Chua’s circuit are given by
Cy = 5.56 nF, C; = 50 nF, G = 0.70028, L = 7.14 mH, Ro = 0
Q, G, = —-08mS, G, =—-05mS, E=1V, K; = 0.01. The
Chua’s circuit exhibits a double scroll Chua’s attractor for these
parameters. We choose the synchronization error to be vi — 91.
In all of our simulations, the initial conditions of the transmitter
and the receiver are (v1(0), v2(0), i3(0)) = (-0.2 V, —0,02 V,
0.1 mA) and (i,(0), #2(0), 73(0)) = (0.02 V, =0.12 V, —0.1
mA), respectively. So the transmitter and the receiver are initially
desynchronized. The fourth order Runge-Kutta method with fixed
step-size h = 107° s is used to simulate the system.

Fig. 2 shows the simulation results when K.(t) is a sinusoidal
function as follows

K.(t) = 0.5 — 0.1sin(757t) ©)

and controller #1 is used with k; = 10°.

Fig. 2(a) shows K (t), K, (t) and K.(t)K-(t). We can see that
K, (t) asymptotically approaches ¢y, and the settling time is about
0.6 ms. Fig. 2(b) shows the synchronization error vy (t) — ¥1(t).
For comparison, the synchronization error in the case when no
adaptive controller is used is shown in Fig. 2(c). One can see that the
synchronization error is reduced significantly by using the adaptive
controller. When controllers #2 and #3 are used, the simulation results
are almost the same.

When the coupling factor K; becomes too small, the transmitter
and he receiver will be desynchronized even when the channel
has a unit gain K.(t) = 1 for all times. Fig. 3(a) shows this
de-synchronization with K1 = 0.0005. However, we find that
the adaptive controllers used can also compensate for this kind
of desynchronization. Fig. 3(b) shows the simulation result when
K.(t) = 1 and K; = 0.0005, and controller #1 with k, = 10°
is used. We see that the synchronization error approaches 0.
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Fig. 2. Synchronization of Chua’s circuits when the channel gain K. (t) is
a sinusoidal function and controller #1 is used. (a) The channel gain K.(t),
gain of adaptive controller K'-(¢) and the product K.(¢)Kr(t). (b) The
synchronization error (v1 — ¥1) when adaptive controller #1 is used. (c)
The synchronization error (vy — ¥1) without using adaptive controller.

III. ApApPTIVE CONTROLLER FOR
TIME-VARYING PARAMETER COMPENSATION

Parameter mismatch can also result in the loss of synchronization
of the system shown in Fig. 1. Although the synchronization is robust
in the sense that it can tolerate some parameter mismatch [10], the
authors of [5] gave an experimental example showing that a 1%
resistor mismatch can sharply reduce the quality of the received
signal.

In this section, we study the synchronization in the cases where
the parameters of the transmitter are time-varying. In this case, we
rewrite the driving system as follows:

= KO Ko ()G (02 — v1) — F(01)]
v = XU Ka ()G (01 - v2) + i) (10)
La = KOy, — (Kg,(t) + Ro)is)

where Ko, (t), Kc,(t), Ki(t), Kry(t) and K(t) are the time-
varying factors of the parameters C1, C», L, Ry and G, respectively.
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Fig. 3. (a) The synchronization error (vi — 1) when channel gain

Kc(t) =1 and a weak coupling factor K1 = 0.0005 is used. No controller
is used. (b) The synchronization error (v1 — ¥1) when the channel gain K (1)
is 1 and a weak coupling factor K; = 0.0005 is used. Controller #1 is used.

The driven system is as follows:

W= %@[K'G(t)@(@ = 01) = f(91) + Ki(vs — 01)]
dd—g = f‘%;”[ﬁ'g(t)G(ﬁl ) + i3+ K1 (v, — 1))
dia — KL _5, — (Kpy(t) + Ro)is + Ky (vy — 1]

1n
where Kc,(t), Kc,(t), Kp(t), Kr,(t) and Kg(t) are com-
pensating adjustments of the parameters Cy, C>, L, Ry and G,
respectively, which are adaptively modified by using the following
adaptive controllers. In this paper, we consider the cases when only
one parameter is time-varying at a time. The adaptive controllers used
are similar in form to those used in [22] and [23].

A. Compensating for K¢
The controller is chosen as
i

I; t) = kisgn
(1) 1g(aI

% )( )
G

1 N - -
= klsgn(—G(vg —Ul))(v1 —-'U1) (12)
Ch
The simulation results are shown in Fig. 4 with &y = 10°. Kg(t)
is defined by the following sinusoidal function.

157Tt>

Fig. 4(a) shows K (t)(dashed line) and K¢(t)(solid line). One
can see that K(t) asymptotically approaches K(t) with a settling
time of about 3 ms. Fig. 4(b) shows the synchronization error. Note
in Fig. 4(a) that from 45.5 to 63 ms, Kg(t) is almost constant
while K¢(t) decreases. This is because in the parameter range
corresponding to the waveform of K¢ (t) during 45.5 ms to 63 ms,
the synchronization is maintained even though K (t) # K (t). In

11— 0.0SSin( (13)
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Fig. 4. Synchronization of Chua’s circuits when G is a sinusoidal function
of time. (a) K(t) and K (t). (b) The synchronization error (v; — 1)
when the adaptive controller is used. (¢) The synchronization error (v, — ¥1)
without the adaptive controller.
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Fig. 4(c) we show the synchronization error without the adaptive
controller and we can see that in the period 45.5 to 63 ms the
synchronization error is small.

B. Compensating for K¢,

In this case, the controller used is

9 N
I:;I)(Ul — 1)

I.:fol (t) = klsgn<a =

= klsgn(cil[G('Dz — 51) - f(f)]) + Kl(vl — ’ljl)])

X (’1}1 — ’171) (14)

The simulation results are shown in Fig. 5 with k; = 2 x 10°.
K, (t) is the sinusoidal function given in (13). From Fig. 5(a) one
can see that K¢, (t) asymptotically approaches K¢, (t) with a settling
time of about 1 ms. Fig. 5(b) shows the synchronization error.
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Fig. 5. Synchronization of Chua’s circuits when C is a sinusoidal function

of time. (a) K¢, (t) and K¢, (t). (b) The synchronization error (v — ¥1).

C. Compensating for K¢,

In this case, the controller is
: 8% )
Ke,(t) = kmgn(ﬁ)(vl — 1)

= kﬁgn(%—[(}'(bl - f)z) + ;J + I(] (Ul - 171)]>
’2
(15)

X (’Ul — l~)1)

The simulation results are similar to those shown in Fig. 5 with
k1 = 10° and a settling time of about 2 ms.

D. Compensating for K1

In this case, the controller is
;. a7 )
K (t) = kisgn 4 (v1(t) — 1)
0Ky

1. . ~ . N
= klsgn<z[—v2 — Rois + K1(v1 — U1)]>

X (v1 — ). (16)

The simulation results are similar to those shown in Fig. 5 with
k1 = 10° and a settling time of about 2 ms.

E. Compensating for Kp,
In this case, the controller is

i3
ro

Krolt) = kmgn(ﬁf—) (vi(t) — 1)

= klsgn<—i—z)(v1 — 1) a7



866

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 43, NO. 10, OCTOBER 1996

Time—variant
channel k(t

)

Note: —Absolute value function circuit shown in (b).

—AMA—

_________ 1
I
K |
VCCSH19 |
|
‘ T
ABS - %0
|1 A
IV (2R o i
| R |9 R, 13
— - R
| NR——CI ST 0
e | L
Re | S
l =
Adaptive controller | = Recsiver

VCCS | == Voltage controfled current source.

(@)

1N4150 3k 3k oy
10k 4sv] 1
+
' EiT- LU F347N x 4 out
n 1
o | L 4
10k
W
<
IN4150 10K

Ea s

()

Fig. 6. (a) Schematic diagram of the experimental circuit for studying the synchronization between two identical Chua’s circuits under a time-varying
channel. The equations of the adaptive controller is given by (6). (b) Circuit with the absolute value transfer function.

The simulation results are similar to those shown in Fig. 5 with
ki = 10® and a settling time of about 1.5 ms.

From the simulation results, we find the frequency of time-varying
properties of parameters should be small enough (11 of the natural
frequency of chaotic signal in our simulations), or else the adaptive
controllers may not compensate the time-varying parameters.

IV. EXPERIMENTAL RESULTS

In this section we supplement the computer simulation results
with experimental results from a physical circuit implementation.
The circuit diagram of the system used to study the synchronization
between two Chua’s circuits when the channel is time-varying is
shown in Fig. 6. In our experiments, both Chua’s circuits are identical

and have the following parameters: Cy = 6.8 nF, C> = 68 nF,
L =184 mH, Ry = 12 Q, R = 1.98 k2, Go = —0.73 mS,
Gy = =04 mS, E = 1.8 V, Rc = 3.8 k{2, where R¢ is the
coupling resistor, which satisfies K} = -

The circuit parameters we used exhibits the Double Scroll Chua’s
attractor. When the channel gain is 1, the transmitter and the receiver
are synchronized.

‘When the channel gain drops to K.(t) = 0.65, we find that the
transmitter and the receiver are desynchronized. The relation between
the voltages vo(t) and 9,(t) is shown in Fig. 7.

Next we use the the adaptive controller as in (6), which is
implemented using the circuit shown in Fig. 6 to compensate
for the channel gain which is set at K.(t) 0.65. The
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Fig. 7. When the channel gain drops to 0.65, the transmitter and the receiver
are desynchronized. No adaptive controller is used. The relationship between
vg and o.

Fig. 8. The adaptive controller in Fig. 6 is used to compensate for the
channel gain of 0.65. The relationship between vz and 2.

relation between voltages v2(¢) and ¥2(¢) is shown in Fig. 8.
One can see that the synchronization is restored. Comparing the
results shown in Fig. 8 with those shown in Fig. 7, one can
see that the effect of the adaptive controller is very signifi-
cant.

Next, we study the effect of our controller under a weak coupling
condition. In this case, the coupling resistor is 4.46 k€2, and as shown
in Fig. 9(a), this coupling without the aid of the controller is not big
enough to synchronize the transmitter and the receiver even when a
unity channel gain is used. In Fig. 9(b), we show the synchronization
when the channel gain drops to 0.65 and the controller is used.

V. CONCLUSION

We have shown how two Chua’s circuits can synchronize in
the cases where the channel gain and the parameters are time-
varying by using adaptive controllers in the receiver to compensate
for the time-varying properties of the transmitter and the chan-
nel.

Both simulation results and experimental results are presented for
the proposed schemes. These results also show that the adaptive
controllers can compensate for the weak coupling between the two
circuits. These results show that our methods can be useful for de-
veloping practical chaotic spread-spectrum communication systems.

CHL ¥

"%mxé 2
®

Fig. 9. The adaptive controller in Fig. 6 can also compensate the
de-synchronization caused by weak coupling. (a) The relationship between vp
and ¥ shows the de-synchronization when the coupling resistor is 4.46 k2
with a unity channel gain. No adaptive controller is used. (b) The relationship
between v2 and 2 shows synchronization when the adaptive controller is
used to compensate for the weak coupling factor with a channel gain of 0.65.
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