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Canonical Realization of Chua’s
Circuit Family

LEON O. CHUA, reLLOWw, IEEE, AND GUI-NIAN LIN

Abstract —In this paper we present a new canonical piecewise-linear
circuit capable of realizing every member of the Chua’s circuit family
[6]. It contains only six two-terminal elements: five of them are linear
resistors, capacitors, and inductors, and only one element is a three-seg-
ment piecewise-linear resistor. It is canonical in the sense that (1) it can
exhibit all possible phenomena associated with any three-region sym-
metric piecewise-linear continuous vector fields, including those defined
in [1] and in [2], and more; and (2) it contains the minimum number of
circuit elements needed for such a circuit.

Using this circuit, we proved a theorem that specifies the constraint
on the types of eigenvalue patterns associated with a piecewise-linear
continuous vector field having three equilibrium points. This theorem
has an explicit physical meaning and unifies the corresponding theorem
in [1] and [2]. We also present some computer simulation results of this
circuit, including some new attractors that have not been observed
before.

I. INTRODUCTION

MONG GENERAL piecewise-linear systems, the
class of three-region symmetric (with respect to the
origin) piecewise-linear continuous vector fields (hence-
forth denoted by L) is of particular interest and impor-
tance [1]-[10]. It is proved in [1] and [2] that any two
vector fields & and ¢’ in L are linearly conjugate if and
only if their corresponding eigenvalues in each region are
identical, and are linearly equivalent if and only if their
corresponding normalized eigenvalues in each region are
identical. Here, linear conjugacy implies the respective
dynamic behaviors are identical, whereas linear equiva-
lence implies qualitatively similar dynamic behaviors.
Therefore, if we can build a piecewise-linear circuit
whose natural frequencies are equal to an arbitrarily
prescribed set of eigenvalues, we can derive all possible
phenomena in L by analyzing this one circuit alone. Such
an attempt for the most general class of Chua’s circuit,
called the Chua’s circuit family, has been mentioned in
[6], but no such circuit has been reported to date.
Although Chua’s circuit displays rather rich nonlinear
dynamics [8], many phenomena other than those observed
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from this circuit have been discovered from other piece-
wise-linear circuits belonging to the Chua’s circuit family
[9], [10]. However, we will prove that not one of these
circuits is general enough to satisfy our above-cited objec-
tive.

In this paper, we will present a new piecewise-linear
circuit. It contains the minimum number of circuit ele-
ments needed to generate all possible phenomena in any
three-dimensional, three-region continuous and symmet-
ric piecewise-linear vector fields. In Section II, we
demonstrate why no existing circuits can fulfill our pur-
pose. In Section III, we give the structure of the canonical
piecewise-linear circuit and the explicit formulas for cal-
culating its element parameters from an arbitrarily given
set of eigenvalues. In Section IV, based on this circuit, we
prove a theorem on the class of realizable eigenvalues,
thereby unifying the corresponding theorems in [1] and
[2]. In Section V, we present some simulation results,
including a few attractors that have not been reported
before. For certain eigenvalues where the canonical cir-
cuit in Section Il requires negative dynamic elements,
and /or too many negative resistors, other equivalent but
more practical piecewise-linear circuit realizations are
presented in Section VI.

II. E1GENVALUE CONSTRAINTS FOR EXISTING CIRCUITS

Consider the class of three-dimensional three-region
and symmetric (with respect to the origin) piecewise-lin-
ear continuous vector fields. The eigenvalues in the inner
region D, are denoted by u,, u,, and u,. The eigenval-
ues in the two outer regions D, and D_, are equal,
since the vector field is symmetric with respect to the
origin. We denote them by v, v,, and v5;. Some of the
w’s and the v»’s may be complex conjugate numbers. In
order to avoid complex numbers, let us define

D=y Tyt pa; Dy =y T popy+ Haphy;
P3= Hioks (1)

q=v,tv,+v;; G, =V Vy TV, v+ V3l

q3 =V VyV3. (2)

Let us analyze the type of eigenvalue patterns that can be
produced by Chua’s circuit, as shown in Fig. 1(a). The
v—i relationship of the nonlinear resistor Gy is shown in
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Fig. 1. (a) Chua’s circuit. (b) The v~i characteristic of the nonlinear

resistor G .

Fig. 1(b). The state equations of this circuit are

dv, 1 G
& "¢, (v,—vy)
1

_(val+E(Ga_Gb)(lvl+1|_|vl_1|))
dv, 1 )
7=E[G(U1—Uz)+la] (3)
di, v,
a L

where we have chosen v; = 41 as the break points for
simplicity.
In the D, region, the state equations are linear
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On the other hand, since u,, u,, and ‘u, are the eigenval-
ues we want this system to possess, we have

(s—p)(s—p)(s —ps) =s3—p1s2 +Ppys—p3=0.

(6)
Comparing (5) with (6), we obtain
G G G,
e teh )
¢ ¢ ¢
GG, 1 s
+ — =
cc, Lc, P2 )
G+ G, )
Lc,c, P
Similarly, in the D , | regions we have
G G G,
— =t === 10
¢, ¢ ¢ n (10)
GG, 1 an
+ — =
cc, Lc,
G+ G, (12)
Lc,c,

Subtracting (10) from (7), (11) from (8), and (12) from (9),

Pﬂ- [ -(G+G,) G 0 —_u ] we obtain
dt C, C, ! GG
Gl I “¢ 1, st (13)
dt c, c, G |7 !
di, -1 G(G,-G,)
— 0 — 0 ] —_——=p,— 14
Ca || 2 J_l3_ c.C, p,—4q; (14)
[ ] G,-G, 15)
—_—— - +
v, LC,C, P3+Qqs (
=M, U, (4) orf
1 —-p+
1_—nta (16)
Us ¢, G,—-G,
L
1 —_
where M, is a constant matrix. DT (17)
The characteristic equation of M, is C, G(a,—py)
G G G 1 G(ga3—p3)
=My =53 452 = 4 &4 Ca — = B (18)
[s1—My|=s"+s c, C1+Cl) L P>~ 4q;
Substituting (16), (17), and (18) into (7), (8), and (9), and
‘s GG, + 1 . G+G, =0. (5) after some algebraic manipulations, we obtain a set of
cC, LG, LCC, ’ linear algebraic equations in G, G,, and G,:
0 (p2-a))+ala,-p) a-py-plai—p) |[ G

(p2—g,)(a,-py)
0 qs

43— P3—dx(a,— p))

pa,—p)—(as—p3) || G, |= (19)

— P3 G,

(- I ]
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Fig. 2. The torus circuit.
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This set of homogeneous algebraic equations has nonzero
solutions only if the determinant of the matrix is equal to
zero, i.e.,

det (P2_42)+‘I1(‘11—P1) (%‘Pz)_Pl(ql*Pl)]
qs —P3
=0 (20)
or
(P2 =) (Ps—a3) = (P~ a))(p3a,— a5p,). (21)

This is the main eigenvalue constraint on Chua’s circuit.
Only those eigenvalues subject to this constraint can be
realized by Chua’s circuit. In addition, the following obvi-
ous constraints must also be satisfied:

Pi#4qy; DPy*dy; Dy #gs. (22)

Otherwise, C, C,, or L will tend to infinity in view of
(16)-(18).

Let us consider a numerical example using the follow-
ing element parameters from Chua’s circuit in [7]:

Cc,=1/9, C,=1, G=07, G,—-08
G,=-05 L=1/7. (23)
Using (7)-(12), we obtain
p;=0.2, p, =1.96, p3;=6.3
q,=-25, q,=3.85, g;=—-12.6. (24)

It is easy to verify that (24) does satisfy (21).

Consider next the piecewise-linear circuit in Fig. 2.
Since it is related to the torus attractors [9], we will refer
to it as the “torus circuit.” By analysis similar to the
above, we can show that the sets of eigenvalues of this
circuit are subject to the following two constraints:

Pr—q,=0 (25a)
P143— P3q,=0. (25b)

Comparing with (21), (25) has one more constraint on the
values of p’s and ¢’s. It is understandable since the
number of circuit elements in the torus circuit is smaller
than that in Chua’s circuit by one. Also, it is easy to see
that (25) is a special case of (21). However, (25a) violates
(22). Therefore, all eigenvalue sets produced by the torus
circuit can not be produced by Chua’s circuit, no matter
how one adjusts the circuit parameters in this circuit.!

P R .

This does not mean that Chua’s circuit cannot display torus attrac-
tors. As a matter of fact, we have obtained torus attractors from Chua’s
circuit, which are associated with eigenvalues different from those in [9)].
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Fig. 3. The double hook circuit.

Consider next the piecewise-linear circuit in Fig. 3. We
will refer to it as the “double hook circuit” [10]. By a
similar analysis we can show that this circuit is also
subject to the eigenvalue constraints (21) and (22), as in
Chua’s circuit. Hence from the point of view of computer
simulation they are equivalent. However, the correspond-
ing element parameters in these two circuits are different
for a particular set of eigenvalues. From the point of view
of experimental observation, one of these two circuits
therefore would be a better choice if it requires fewer
negative dynamic elements in a particular case.

III. THE CANONICAL P1ECEWISE-LINEAR CIRCUIT

In this section, we will present a universal piecewise-
linear circuit for realizing any eigenvalue pattern associ-
ated with any vector field in L.

First we have to decide the minimum number of ele-
ments such a circuit needs. Since our objective is a
three-dimensional three-region symmetric piecewise-lin-
ear continuous vector field, the circuit under considera-
tion is allowed to have only one nonlinear resistor whose
v—i characteristic is three-segment piecewise-linear and
symmetric with respect to the origin. The circuit must
have three dynamic elements (capacitors and/or induc-
tors) since the system is of third order. The rest are all
linear resistors. Let us investigate next how many linear
resistors are needed in general.

A linear autonomous RC circuit has two circuit ele-
ments and has only one natural frequency u=1/RC. If
we increase C to aC and decrease R to R/a, the
natural frequency of the circuit will remain unchanged.
Therefore, to produce a natural frequency w, we can
assign an arbitrary value to C or R (e.g, let C=1) and
find the value for the other parameter.

The situation is similar for Chua’s circuit. In (7)—(12)
there are six unknown parameters: Cy, C, G, G,, G,, and
L. However, if we regard C,, C,, G, G,, G,, and 1/L as
the unknown variables, the left-hand sides of (7)-(12) are
homogeneous functions of the zeroth order. For any
particular set of p’s and ¢’s, if (C,y,Cyg, Gy, Gg, Gpos Lo)
is a solution of (7)-(12), then (aC,g,aCy, @Gy, aG,,,
@Gy, Ly /a) (a is an arbitrary real number) will also be
a solution. In other words, if (7)-(12) have solutions, we
can assign an arbitrary value to any one of the six parame-
ters (e.g., let C,=1) and calculate the remaining five
parameters. This means that out of the six circuit parame-
ters, the “degree of freedom” is only five. From the point
of view of circuit theory, we can refer to this observation
as “impedance scaling.”
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The above analysis reveals why Chua’s circuit cannot
produce an arbitrary set of eigenvalues. There are not
enough circuit parameters! Since we have six eigenvalues
in our problem, we nced at least seven parameters.
Therefore, besides three dynamic elements and one non-
linear resistor (with the two slopes in different regions
counted as two circuit parameters), we need at least two
linear resistors to build a canonical circuit.

Of course, not every circuit containing that many ele-
ments will qualify as a canonical circuit. Our canonical
circuit is shown in Fig. 4(a).

The state equations of this circuit are

dv, 1 i
7=a[—f(vl)+13]

dv, 1 )
7=a(_602+l3)

diy; -1 .
E=T(U1+U2+Rl3) (26)

where

1
f(v)=Gw+ E(Ga—Gb)(IU +1—jv—-1) (27)

is the v—i characteristic of the nonlinear resistor shown
in Fig. 4(b).

In the D, region (i.e., |v,| < 1), the state equation (26)
becomes linear:

[dv, ] [ -G, 1 ] [ ]
7 c, 0 —El— U; v,
dv, -G 1
_Et_ = 0 C2 C_z U, =M, U,y
diy -1 -1 -R ) .

A | 1]

(28)

where M, is a constant matrix. The characteristic equa-
tion of M, is

1-my =545t ey SR
A V)
GG, GR GR 1 1
+s + t
c,C, LC, LC, LC, LG,

G +G,+GG,R
+ Tlcz = (29)
Just as in Section II, we obtain
G, G R
a+a+z=*m (30)
GG, G,R GR 1 1
cc, 16 tic Tie fre, e OV
G+G,+GG,R
~Iicc,  ” ps. (32)
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Fig. 4. (a) The canonical piecewise-linear circuit. (b) The v—-i charac-
teristic of the nonlinear resistor Gy,.

Similarly, from the equation in the D, regions (i.e.,
|v,| > 1), we obtain

G, G
C—l+a+z=—fh (33)
GGb+GbR+ﬁ+ ! +—=gq (34)
cC, LC, LC, LC, LC,
G +G,+GG,R
——————=-45. (35)

LC,C,

Subtracting (33), (34), and (35) from (30), (31), and (32),
respectively, we obtain

Ga - Gb
¢, T Thta (36)
G,-G,{G R (37)
— t+—|=p,—
¢, \¢, L)%
(G,—G,)(GR+1)
= —p;3+q;. 38
LC,C, P37 4; (38)
Substituting (36) into (37) and (38), we obtain
G R -p,+
G R _—mta 39)
¢ L pi—q
and
GR+1 —
( ) _bs q; . (40)
LG, py—4q,
Substituting (39) into (30) and (33), we obtain
G, P24
—=-p,+ (41)
¢ Y pima
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and

&——q +P2_42
C ! p]_ql.

(42)

As mentioned before, among the seven parameters we
can assign an arbitrary value to any one of them. Let us

take
C, =1. (43)

Then we obtain the values of parameters G, and G, from
(41) and (42):

P~ 4q;

Ga=_p1+ (44)
P~ 4q
P~ 4a;

Gy=—q,+ . (45)
p,—q,

Substituting (39), (40), (41), and (43) into (31), we obtain
the following value of L:

1
L= .
Py —4q; b~ 49> P3— 43 (46)
py+ - D -
pi—q p—4q py—4q
Now from (32) we have

G Ga(P3'q3)i|
—=—Llps+——F 1=k (47)
G, [ ’ Cp—aq)

where the constant k is introduced for simplicity. Substi-
tuting (47) into (39), we obtain the value of R:

D, —4q
=—L(JL—l+k. (48)
D~ q
From (40) we have
1 Pa—q GR - -
_Ps 3 =P3 ‘13+k(k+P2 42)-
LC, p,—q LC, p,—q Py — 4,
(49)
Hence, the value of C, is given by
C : (50)
2= — — . 50
L[Pz q; +k(k+pz qz)
Py~ 4, py—4q,
Finally, from (47) we obtain the value of G:
G =kC,. (51)

Equations (43)-(46), (48), (50), and (51) are explicit
formulas for calculating the seven parameters in our
canonical circuit from any given set of eigenvalues. The
only constraint is

P # 4 (52)

Otherwise some of the parameters will tend to infinity.
Constraint (52) is mainly academic since in the unlikely
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event that
(53)

for a given set of eigenvalues, we can usually eliminate
this singular situation by perturbing one of the u’s or »’s
without causing qualitative changes in the system’s dy-
namics.

Py=4q

IV. SoMmE PropERTIES OF THE CANONICAL CIRCUIT

The three-dimensional vector fields produced by our
canonical circuit have the following properties.

1) The vector field is continuous everywhere and sym-
metric with respect to the origin.

2) The state space is partitioned into three regions
D_,, Dy, and D, by two parallel planes located at
v, ==L

3) The vector field is linear in region D, and affine in
regions D_, and D, .

These properties are obvious from the structure of the
canonical circuit. In [1] and [2], the vector fields under
consideration are more restricted. They always have one
equilibrium point in each region D_;, Dy, and D,,.
Besides, the vector fields discussed in [1] all have one real
eigenvalue and a pair of complex conjugate eigenvalues in
each region (henceforth called fype I eigenvalues), while
those discussed in [2] all have three real eigenvalues in
the D, region, and one real and a pair of complex
conjugate eigenvalues in the D, regions (henceforth
called type II eigenvalues). These two types of eigenvalue
patterns are more interesting because their vector fields
can exhibit chaotic attractors. However, the vector fields
that can be produced by the canonical circuit have no
such constraints. Their eigenvalues may be either all real,
or one real plus a pair of complex conjugate values in
each region. In the canonical circuit, the origin is of
course an equilibrium point. However, the D, regions
may or may not have equilibrium points. In the latter
case, we say the region D, has two virtual equilibrium
points, in addition to the equilibrium point at the origin.
In [1] and [2], there are theorems stating under what
condition there will be equilibrium points in regions D, ,.
The proofs of these theorems did not make use of any
nonlinear circuit theory, and hence are quite involved and
have little physical meaning. For our canonical circuit we
can prove a similar theorem using a much simpler proof,
which at the same time gives a much clearer physical
meaning.

Theorem 1: The following three conditions are equiva-
lent, each one giving a necessary and sufficient condition
for a vector field realized by our canonical circuit to have
equilibrium points in the D, | regions.

1) The canonical circuit has three dc operating points,
) (G+GL+GRNG+G,(1+GR)<0,and  (54)
3) pyq;<0. (55)
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®)

Fig. 5. (a) The dc circuit associated with the canonical piecewise-linear
circuit. (b) The dc operating point of the circuit.

Proof:

1) The equilibrium points of the nonlinear system
described by (26) are obtained by solving

f(v)—iz=0
Gv,—iy=0
v+ U, + Riy=0. (56)
Equations (56) are exactly the KCL and KVL
equations of the resistive circuit shown in Fig.
5(a), which is obtained from the canonical circuit
with the capacitors open-circuited and the induc-
tor short-circuited. It is obvious from the state
equations (28) that the canonical circuit has one
and only one equilibrium point at the origin in the
D, region (whenever |M,| # 0). Hence, if the cir-
cuit has three dc operating points, two of them
must be located in the D, regions. The converse
is true, too. Fig. 5(b) gives the physical interpreta-
tion: whenever the loadline has three intersection
points with the three-segment piecewise-linear
characteristic, two of them must necessarily be
located in the D, regions.
2) Segment B* in Fig. 5(b) is described by the
equation
i=(G,—G,)+Gy.
The loadline is described by
—-v
i= T
R+ —
G
The abscissa of the intersection point of (57) and
(58) is given by
(G,—G,)(1+GR)
U =
°" G+G,(1+GR)
Observe that the region D, has an equilibrium
point if and only if

(57)

(58)

(59)

vy > 1. (60)

It is easy to show that (60) is equivalent to (54)
after some simple algebraic manipulations.
3) From (32) and (35), we have

(G+G,(1+ GR))(G + G,(1+ GR))
L*CiC?

=psq;- (61)
This implies that (54) and (55) are equivalent. O
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Remark:

1) When eigenvalues are of type I, the signs of p;
and ¢, are determined by the signs of y, and v,,
respectively, where vy, and vy, denote the real
eigenvalues in the D, and D, regions. There-
fore, (55) is equivalent to the condition

Yo¥1<0. (62)

When the eigenvalues are of type 11, the sign of p,

is determined by the sign of pu,u,u; and the sign

of g, is determined by the sign of y,. Therefore

(55) is equivalent to the condition

Bttty <0. (63)

Conditions (62) and (63) are exactly the same

conditions given in [1] and [2]. We have, therefore,

unified theorem 3.1 in [1] and theorem 4.1 in [2],

in addition to giving an explicit physical interpre-

tation to the theorem.

It is obvious from (59) that the locations of the

equilibrium points depend only on the values of

G, G,, G, and R, and not on the values of Cj,

C,,and L.

2

~

V. REesuLTs oF COMPUTER SIMULATIONS

In this section we present a sample of some computer
simulation results for our canonical piecewise-linear cir-
cuit.

The eigenvalue parameter space is six-dimensional. Ev-
ery point in this parameter space corresponds to one or
more attractors. To search and classify all possible attrac-
tors in such a huge space is a difficult project. Our
simulation is by no means comprehensive. However, the
simulation results presented here include not only all
attractors discovered in L and reported so far in the
literature, but also some newly discovered ones.

Table I shows the simulation results when the inner
region contains a pair of complex conjugate eigenvalues.
Table II shows the simulation results when the inner
region contains only real eigenvalues. Table Il summa-
rizes the values of the eigenvalues and the circuit parame-
ters for a sample of attractors listed in Tables I and II.
Since all vector fields with the same normalized eigenval-
ues are linearly equivalent [1], [2], all examples in Table
Il have been normalized with w,=1 for comparison
purposes.

In Tables I and 1II, limit cycles have been observed for
12 different eigenvalue patterns. Most limit cycles ob-
served have simple shapes and we therefore present only
one figure (Fig. 6) for one of them. Whenever there are
toroidal or chaotic attractors observed for a particular
eigenvalue pattern, we give at least one example in Table
111. For each attractor listed in Table III, we present a
figure that is a two-dimensional projection of that attrac-
tor. Some attractors cannot be classified as toroidal or
chaotic merely from a two-dimensional projection of the
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TABLE 1
SOME ATTRACTORS FOR TYPE I EIGENVALUE PATTERNS

Eigenvalues Type of stability Observed attractors
Stable at | Does P, | Stable stable limit | toroidal | chaotic
Class [| Yo |G | 71 | o1 origin? exist? at P,? || equilibrium | cycle | awractor | attractor

1 + |+ |+ | + no no no no no no
2 + |+ | + - no no no no no no
3 + | + - + no yes no no *1 no *?2
4 + |+ | - - no yes yes yes yes no no
5 + - + | + no no no no no no
6 + - + - no no no no no no
7 + - - + no yes no no yes *3 *4
8 + - - - no yes yes yes yes no no
9 HEEERE no yes no no no no no
10 f{-]+f+]- no yes no no yes *5 *6
11 - + - + no no no no no no
12 - + - - no no no yes no no
13 - - + + yes yes no yes no no no
14 - - + - yes yes no yes no no no
15 - - - + yes no yes no no no
16 - - - - yes no yes no no no

*1: see Fig.6 for an example of a periodic attractor.

*2: see Fig.7,8,9 for examples of chaotic attractors.

*3: see Fig.10,11 for examples of toroidal attractors.

*4: see Fig.12,13,14 for examples of chaotic attractors.

*5: see Fig.15,16 for examples of toroidal attractors.

*6: see Fig.17 for an example of a chaotic attractor.

trajectory. In order to distinguish between toroidal attrac-
tors and chaotic attractors, one must usually plot cross
sections of the attractors. Due to the limitation of space,
however, we do not show cross sections in this paper.
Also, we have omitted figures of some well-known attrac-
tors (e.g., the Double Scroll attractor).

In our simulations, chaotic attractors have been ob-
served for six different eigenvalue patterns. These obser-
vations greatly enrich the knowledge of dynamical
behaviors in the Chua’s circuit family. Moreover, some
interesting dynamical phenomena (e.g., intermittency)
have been observed from this canonical piecewise-linear
circuit, and we will report them elsewhere.

VI. AN ALTERNATIVE REALIZATION OF THE

CanonicaL CirculT

We do not claim that the canonical circuit in Fig. 4 is
unique. However, so far we have not found any other
circuit having the same degree of generality.

Fig. 21(a) shows an alternative piecewise-linear circuit.
The state equations of this circuit are

dv, 1 )
= = (CGwti)
i
dv, 1 )
at =C—(—GU2+’3)
2
di, -1 ]
—(}?—"Z—(Ul+l)2+f(l)] (64)

where

1
F(iz) = Ryi+ 5 (Ry = Ry) iz +11=1is=1)(65)

is the v—-i characteristic of the nonlinear resistor shown
in Fig. 21(b).
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TABLE 11
SOME ATTRACTORS FOR TYPE 1I EIGENVALUE PATTERNS
Eigenvalues Type of stability - Observed attractors
Stable at | Does Py | Stable || stable | limit | toroidal | chaotic
Class || My | M2 | s | 71 | 01 || origin? exist? at P47 || equil. | cycle | attractor | attractor
1 + + + + + no no no no no no
2 + + + | + - no no no no no no
3 + + + - + no yes no no yes no *7
4 + + + - - no yes yes yes yes no no
5 + + - + + no yes no no no no no
6 + + - + - no yes no no yes no *8
7 + + - - + no no no no no no
8 + | + - - - no no no yes no no
9 + - - + + no no no no no no
10 + - - + - no no no no no no
11 + - - - |+ no yes no no yes no *9
12 + - - - - no yes yes yes yes no no
13 - - - + | + yes yes no yes no no Rno
14 - - - + - yes yes no yes no no no
15 - - - - + yes no yes no no no
16 - - - - - yes no yes no no no

*7: see Fig.18 for an example of a chaotic attractor.
*8: see Fig.19 for an example of a chaotic attractor.

*9: see Fig.20 for an example of a chaotic attractor.

In the D, region (i.e., |i5] < 1), the state equations (64) It follows from (67) that
become linear:

G, G, R .
_ _ _ o _ _ _ — 4 —=—

dv, -G, 1 cto T 8

a“ G o : G,G, G,R, G,R 1 1

dv, | 0 -G, 1 M 2 le, T2 ey +——=p, (69)

Al c ol | el I cC, LC, ' LC, LG, LG,

di, -1 -1 =R, || , G,+G,+G,G,R,

S = = i i ——py. (70)
@ | | L L L "] LC,C,

(66)
Similarly, from the equation in the D,, regions (ie.,
where M, is a constant matrix. The characteristic equa- |3/~ 1) we obtain
tion of M, is

G, G, R,
R W L ).

3 G, G, R, ¢, ¢C, L

[SI—M()l:S + 52 ‘5—+C—+T
! z GG, GR, G,R, 1

+ + +—+—=q, (72)

GG, G,R, G,R, 1 1 C\C, LC, LC, LC, LG

+5 + + + +—

cC, LC, LC, LC, LC, G,+G,+G,G,R,

LC.C =—q5. (73)
G,+G,+GG,R, G2

e ~0. (67)
1-2 Subtracting (71), (72), and (73) from (68), (69), and (70),
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TABLE 11
PARAMETERS OF THE CANONICAL CIRCUIT ASSOCIATED WITH
DIFFERENT ATTRACTORS IN FiGs. 6-20

Eigenvalues* Circuit p *
Fig. || w2 | M " o1 C, G G, | G L R
6 || 030 | 020 200 | -200 | 020 || 1513 | 4924 | 19.35 | 39.65 | .00128 | -0.0252
7 |l 020 | 030 100 | -30 | 030 || 11183 | -2565 | 30.73 | 33.93 | .00094 | -.02947
8 |lo30 | 0577 4278 | -133 | 029 || 1700 | -86.0 | 598 | 7.146 | 0234 | -1376
9 |l 044 | 0577 4278 | -133 | 029 || 1050 | 703 | 517 | 647 | 0297 | -015
10 || 1474 | -0487 1.0 | -104 | 0343 || 066 | 0071 | 012 | -036 | -050 | -090
11 || 272 | -0635 45746 | -076 | 0019 || 220 | 111 | 233 | 211 | 220 368
12 || 272 | -136  j.409 | -409 | 0454 || 484 | 316 | 268 | 236 | um 346
13 || 1474 | 0487 1.0 | -1.04 | 0343 || -154 | 0285 | -141 | 941 | 582 | -125
14 || 618 | -370 4j3.50 | 230 | .195 || 996 | 894 | 672 | 850 | 020 | -113
*1 [ 728 | -319 1892 | -129 | 061 || -632 | -0033 | -419 | 839 | -1.02 | -330
*2 i 728 | -319 4892 | -1.29 | 042 || 060 | 001 | -445 | 851 | -1.10 | -409
15 || -050 | 080 1.0 | 035 | -056 || -3.19 | .0042 | -114 | 0726 | 687 | .003%9
16 || -1.62 | 084 #j1as | 922 | -412 || 070 | -0015 | 1.034 | -515 | -685 | -285
17 || -450 | 0235 4346 | 277 | -124 || 411 | 185 | 236 | 193 | 252 | -38t
18 || 680 | 430 | 250 | -90 | 001 || 1230 { -1564 | -11.1 | 1147 | 0389 | -0473
19 || 1.032 | 1354 | -4425 | 020 | -20 || -95.68 | 3733 | 20 | -895 | 4448 | .s84s
20 || 919 | -541 | 364 | -353 | .56 || -156 | -642 | 413 | 906 | 421 | -s537
*3 || 115 | 298 | -570 | -89 | .150 || -1.35 | 0014 | 663 | -310 | 251 226
*. The parameters @, and C, for all attractors are assumed to be equal to 1.
*1: A Double Scrol! attractor. The same as Fig.2 of [7].
*2: A Réssler’s spiral-type attractor. The same as Fig.8 of [8].
*3: A Double Hook attractor. The same as Fig.3 of [10].
respectively, we obtain let us take
R,—-R,
- =—-p;tq (74) L=1. (79)
L
R,-R, (G, G, Substituting (77) and (78) into (68) and (71), we obtain the
| m=t = |=P24q (75) following values of R, and R,:
L ¢, G, a
G,G,(R,— R P~ 4,
1 2( a b) =_p3+q3. (76) Ra=—p1+A_ (80)
LCC, b4
Substituting (74) into (75) and (76), we obtain Dsr— 4,
Ry=—q;+———. (81)
G, G, -—-p,taq, P1— 4,
e e —— (77)
C, C, py—4q .
On the other hand, (77) and (78) imply that G, /C, and
and G, /C, are the two roots of the following quadratic
equation:
GG, pi—a,
—_— = (78)

CC, pi—q )

Since one parameter can be assigned an arbitrary value,

D3 —4q;
D,—4q

=0.

x2+x(p2_q2)+ (82)

D1~ 4,
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9.360

x[1]

0.780

Fig. 6. An example of a limit cycle associated with a type I class 3 eigenvalue pattern. (Projection onto the (v,,v,)-plane.)
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Fig. 7. An example of a chaotic attractor associated with a type I class 3 eigenvalue pattern. (Projection onto the

(v5,0,)-plane.)
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0.005
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4,227

Fig. 8. An example of a chaotic attractor associated with a type 1 class 3 eigenvalue pattern. (Projection onto the

(vy,v,)-plane.)
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Fig. 9. An example of a chaotic attractor

-0.18

x[0]

10.27

associated with a type I class 3 eigenvalue pattern. (Projection onto the
(v1,v,)-plane.)
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3.100 —r————— ] T—T—— T T T T T T T

1.625

x[(2]
-1.325
-2.800
-6.200 -3.725 -1.250 1.225 3.700
x[1]

Fig. 10. An example of a toroidal attractor associa(ted wi)th a ty}ae I class 7 eigenvalue pattern. (Projection onto the
v,,i3)-plane.
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0.620

0.385 |-

x[1]

0.111 —

-0.144 .
-5.890 -3.827 -1.963 0.000 1.963

x[0]

Fig. 11. An example of a toroidal attractor associated with a tyg)e I class 7 eigenvalue pattern. (Projection onto the
(v, t,)-plane.
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4.774 T T T T T
I 4
L 4
2.390 —
9.005
F N N 1
x[2] Sy Y .
({f\\\ 1
o L \\\\\\\(('l’@\xss
’ \\\\\\\\\\"r:t‘
L R AL B
-4.763 U B S .
-128.3 -684.2 0.0 64.2 128.4
x[1) (1E-3)
Fig. 12. An example of a chaotic attractor associated with a ty;;e I class 7 eigenvalue pattern. (Projection onto the
(v5,i4)-plane.
22.00 T T
> -4
o g
- -4
11.00 —
0.00
x[11
L J
-11.00 |- —
-22.00 A L
-4.800 -2.400 2.000 2.400 4.800
x[@]

Fig. 13. An example of a chaotic attractor associated with a type I class 7 eigenvalue pattern. (Projection onto the
(vl,uz)-plane.g
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T T T T ~T T T T Y T
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x[11

-0.403

-0.808 ' L " L I 1 \ " L n 1 1 2 |
-11.12 -56.61 -0.05

5.51 11.07

x[0]
Fig. 14. An example of a chaotic attractor associated with a tyg;c I class 7 eigenvalue pattern. (Projection onto the
(vq,v,)-plane.
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Fig. 15. An example of a toroidal attractor associated with a tyge I class 10 eigenvalue pattern. (Projection onto the

(vy,13)-plane.
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5.106

2.532

-9.043

x{11

-2.618 -

-5.183

-3.871

Fig. 16. An example of a toroidal attractor associated with a

1.480

0.0e81

x[(01

(vy,0,)-plane.

ty[;e I class 10 eigenvalue pattern. (Projection onto the

0.738

-0.003

(01

-0.744

-1.485

-150.3

Fig. 17. An example of a chaotic attractor associated with a type I class 10 eigenvalue pattern. (Projection onto the
(v,,v,)-plane.)
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Fig. 18. An example of a chaotic attractor associated with a type II class 3 eigenvalue pattern. (Projection onto the
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vy,0,)-plane.)
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Fig. 19. An example of a chaotic attractor associated with a type II class 6 eigenvalue pattern. (Projection onto the

(v,,i3)-plane.)
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21.00 —T—T——T— ] —T— T

901

10.50 —

x{2]

-10.50 |-

-21.00 L

-2.200 -1.100

0.000 1.100 2.200

x[1]

Fig. 20. An example of a chaotic attractor associated WiI;l a typ;: I class 11 eigenvalue pattern. (Projection onto the
(5, 13)-plane.

Fig. 21. (a) An alternative but less general piecewise-linear circuit.

(b) The v-i characteristic of the nonlinear resistor R .

Solving for the values of G, /C, and G, /C,, we obtain

_G_1_ _P2+42+\/(Pz_42)2_(171_511)(173_(13)

C, 2(p,—qy)
k, (83)

1>

2= _p2+q2_\/(p2"512)2_(171_41)(P3_Q3)
G, 2(1’1“‘11)
£k,. (84)

Substituting (78), (79), (80), (83), and (84) into (69) and
(70), we obtain

1 1 P3—4q3 Pry—4q (P>~ 4;
—t+ o =p,- = + —p) (85)
¢ G ? py— 4, p|_‘1|(P1“CI1 1

ky k, bP3—43 (P2~ 49,

bk preme )
C, C, py—q,\P— 4

Equations (85) and (86) constitute a system of two linear

algebraic equations in 1/C, and 1/C,, which is easy to
solve. Finally, we can calculate G, and G, from (83) and
(84):

Gl = le] (87)
G, =k,C,. (88)

Since all circuit parameters can be explicitly calculated
from the given set of eigenvalues, this circuit seems quali-
fied as an alternative canonical circuit. However, it is
subject to a somewhat stronger restriction than the canon-
ical circuit proposed in Section III. This is because (83)
and (84) have real solutions only if

(Pz_42)224(1’1‘41)(1)3_‘13)- (89)

Therefore, it is not general enough to qualify as a canoni-
cal circuit. If we are only interested in computer simula-
tion, the canonical circuit in Fig. 4 is more than adequate
and there is no need to search for alternative circuits.
However, our canonical circuit may contain some negative
dynamic elements for some sets of eigenvalues. In the
laboratory, negative C and L are usually harder to realize
than negative R. Consequently, if another circuit can
produce the same vector field but contains fewer negative
dynamic elements, then it may be preferable to use such
an alternative equivalent circuit for practical realization
purposes.

VII. CoNcLUDING REMARKS

We have developed a canonical circuit that is general
enough for simulating all possible dynamics associated
with any three-dimensional three-region and symmetric
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piecewise-linear continuous vector field. It contains only
one three-segment piecewise-linear resistor and the least
number of two-terminal linear elements. Moreover, it
requires no controlled sources. All circuit parameters can
be determined uniguely and explicitly from any given set
of eigenvalues with no constraints. It would of course be
highly desirable to derive analogous canonical circuits for
higher dimensional systems.
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