On the dynamics of hyperchaotic circuits: a new synchronization approach
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Abstract - In this paper a technique for
synchronizing hyperchaotic circuits under
parameter or initial condition changes is illustrated.
Each hyperchaotic circuit is constituted by two
coupled Chua's circuits. Conditions for achieving
synchronization are discussed in detail in both the
cases of bidirectional and unidirectional coupling
between two Chua's circuits. Several numerical
examples are carried out to show the capability of
the suggested approach.

LINTRODUCTION

Recently there has been an increasing interest in the
problem of synchronizing chaotic circuits [1-3]. This
because chaotic synchronization has become very
important in speech and image processing [4] as well as
in secure communications [5, 6]. Very rccently an
attempt of synchronizing hyperchaotic systems has been
developed in [3] by extending the approach of Carroll
and Pecora illustrated in [2]. The problem of obtaining
two real hyperchaotic circuits oscillating in a
synchronized way is not trivial. Namely, as the same
initial conditions cannot be exactly reproduced and
identical system parameters cannot be realized in real
circuits, synchronization seems not to be a rcachable
objective. In fact, in this case any small difference in
initial conditions and parameters would be exponentially
amplified [4]. The aim of this paper is to provide a
technique to overcome this problem. In particular, since
it has been demonstrated the existence of several
hyperchaotic attractors, such as the "double-doutle
scroll” [7], in this paper the theoretical results obtained
in [3] are used to achieve the synchronization between
two hyperchaotic circuits under parameter or initial
condition changes, each constituted by two coupled
Chua's circuits. The capability of the suggested approach
is demonstrated by carrying out some numerical
examples.

II. DYNAMICS AND SYNCHRONIZATION OF
HYPERCHAOTIC CIRCUITS

The hyperchaotic circuit considered in this work is

formed by two bidirectionally coupled Chua's circuits as
shown in Fig.1. The state equations for this circuit can
be expressed as [7]:
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where
foey=bx, +(@-b)(|x 41l -2, 112 o
fac)=bx, +@-b)(|x+11-lx, 112 @)

and o, B, a and.b are constants.

Fig.1 Bidirectionally coupled Chua's circuits

If the parameters K and M are both different from
zero, the two Chua's circuits are bidirectionally coupled,
whereas if only one of these parameters is equal to zero,
the remaining one individualizes the unidirectional
coupling between the two circuits.

The proposed approach consists in evaluatling the
Lyapunov exponents of this network, which has to be
decomposed into two subcircuits of dimensions & and (6-
k) respectively, where k is the number of positive
Lyapunov exponents. These subcircuits are then
duplicated and cascaded [3]. Following this procedure,
the original circuit (1)-(8), called "drive system", is
arranged to generate two "response” or "driven"
subcircuits which have to be driven by proper signals
[3]. The first response subsystem is represented by the
following equations:
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and is driven by the hyperchaotic signals x,(¢) and x,(z);
the latter response subsystem is expressed by the
equztions:

’%1” = ax,- x," f(x,"))

X, ol x, fx,")

(13)
(14)



and is driven by the variables x,'(z) and x5 (). A block
diagram illustrating the cascaded synchronizing
technique is shown in Fig.2.
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Fig.2 Block diagram iltlustrating the proposed

synchronizing technique

It can be shown (3] that if all conditional Lyapunov
exponents, i.e., the Lyapunov exponcnts of the driven
subcircuits, are negative, then the subcircuits are stable
and the response variables will synchronize with the
corresponding variables of the original circuit (1)-(8).

[II. APPLICATION TO A PAIR OF COUPLED CHUA'S
CIRCUITS

In this application all numerical computations have
been performed using the software INSITE [9].

A. Bidirectional coupling

The following parameter values have been chosen for
the two bidirectionally coupled Chua's circuits shown in
Fig.1: K=M=0.02,a=10.00, p=14.87, a=-1.27, b=-0.68
with the following initial conditions: x,(0)=0.010,
x4(0)=0.011, x,(0)=x3(0)=x5(0)= x5(0)=0. The following
values of the Lyapunov exponents have been found: 4; =
0.463; Ay=0.397; A3=0; Ag=0; As=-3.483; Ag= —3.925.

In this case, the system evolution is hyperchaotic. The
corresponding double-double scroll attractor behaviour
is depicted in Fig.3. The method illustrated in the
previous section has been applied assuming that the
response subsystems parameters have the same values of
the corresponding parameters of the drive system,
wherea¢ the initial conditione are: x,"(0) = 0.011,
x4"(0)= 0.012, x,(0) = x;(0) = .5'(0) = x,(0) = 0. The
Lyapunov exponcnts of the drive system become: A4, =
0.454; Ay= 0.416; Ay=0; Ag=0; As= =3.627; Aig= -3.937,
whereas the values of the conditional Lyapunov
exponents of both the response subsystems have becen
calculated and are: A; = ~0.491; Ag= -0.504; o= ~0.522;
Ao = =0.559; A;;=-2.275; Ajp=-2.345 I can be observed
that the response subsystems are stable, as the conditional
Lyapunov exponents are negative. Moreover, since there
are two positive Lyapunov exponents for the original

circuit (1)-(8), the hyperchaotic signals x,;(1) and x,(1)
have been used as drive variables to synchronize the
coupled circuits.

Fig.3 The double-double scroll atiractor

Simulation results show that all the state variables of
subsystems (9)-(14) synchronize with the corresponding
variables of system (1)-(8). As an example, Fig.4 shows
the time waveform of the synchronization error es(f)
=x5(1) - x5°(1).
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Fig.4 Time waveform of the synchronization error
es(t) =xs(t) - x5'(1)

B. Unidirectional coupling

In this case the same parameters and inital conditions
of the previous cagse have been chosen for the two
unidirectionally coupled circuits with the only exception
of the parameter M which has been considered equal to
zero. The following values of the Lyapunov exponents
have been calculated: A, = 0411; Ay= 0415, Ay=0; A=0;
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As=-3.766; Ags=-3.849. The two unidirectionally coupled
Chua's circuits exhibit hyperchaotic behaviours.

Now, by applying the suggested synchronization
method, the following Lyapunov exponents for the drive
circuit have been found: A; = 0.388; A,=0.434; A;=0; A,=
0; As=-3.682; Ag= -3.882. Moreover, the values of the
conditional Lyapunov exponents of both the response
subsystems are:d; = ~0.500; Ag=-0.509; Ag= ~0.510; A;q= -
0.535; Aj;=-2.255; A;p=-2.491. The response subsystems
are stable also in this case. Moreover, since there are two
positive Lyapunov exponents for the original circuit (1)-
(8), the hyperchaotic signals x,(r) and x,(¢) have been
used as drive variables to synchronize the coupled
circuits. Simulation results show that all the state
variables of subsystems (9)-(14) synchronize with the
corresponding variables of system (1)-(8) also in the case
of unidirectional coupling. As an example, Fig.5 clearly
shows the time waveform of the synchronization error
e3(t) =x3(t) - x3°(1).

x3(8) -x4'(1)

e3(1)

Fig.5 Time waveform of the synchronization error
e3(t) =x3(1) - x3°(t)

C. Robust synchronization under parameter variations

The aim of this section is to investigate the robustness
properties of the proposed synchronization technique
with respect to parameter changes. In the preceding
section the robustness of the suggested technique in the
presence of 10% changes of the initial conditions for the
response circuits with respect to the drive one has been
considered. However, as is well known, unavoidable
fabrication tolerances make impossible to realize -
identical parameters in real circuits. As a consequence, if
a robust synchronization is not guaranteed in this case
too, there is a serious risk that the motions of the drive
and response systems would be uncorrelated.

Table I shows all the Lyapunov exponents of the
bidirectional coupled circuits under a 5% parameter
variation of the response subsystems with respect to the
nominal values. The perturbed parameters have been
chosen both onc at a time and grouped.

Table I shows that the conditional Lyapunov exponents
of the driven circuit are negative. This guarantees that
parameter valucs need not be exactly the same (o
perform correctly hyperchaotic synchronization. Thesc
results have been confirmed by considering the time
behaviours of the synchronization errors. :

Analogous behaviour has been found when
unidirectionally coupled Chua's circuits are considered.
The corresponding Lyapunov exponents under a 5%
parameter variation with respect to the nominal values
have been reported in Table I1.

IV. CONCLUSIONS

Ir this paper a method for synchronizing two circuits
exhibiting hyperchaotic behaviours has been illustrated.
To this purpose, an original circuit constituted by two
coupled Chua's circuits has been duplicated to generate
two cascaded response subsystems. Synchronization is
achieved by means of proper synchronizing signals.
Several numerical examples have also shown that the
suggested technique assures robustness to the
synchronization under both parameter and initial
condition changes.

TABLE 1
LYAPUNOV EXPONENTS OF THE BIDIRECTIONALLY COUPLED CIRCUITS UNDER 5% PARAMETER VARIATIONS WITH
RESPECT TO THE NOMINAL VALUES

Perturbed parameter drive system

response subsystems

) a 0.456; 0.406; 0; 0; -3.701; -3.958 -0.489; —0.505; -0.523; —0.568; ~2.479; ~2.556
2) B 0.443; 0.414; 0; 0; -3.700; -3.978 ~0.489; ~0.506; -0.522; ~0.571; -2.365; -2.440
3) a 0.433; 0.407; 0; 0; —3.694; —4.021 ~0.488; -0.504; -0.524; —-0.579; -2.606; ~2.633
4 b 0.446; 0.399; 0; 0; ~3.646; ~3.013 —0.490; —0.505; ~0.522; —0.566; ~2.058; ~2.144
5) o, B,ab 0457; 0.425; 0: 0; -3.612; ~3.919 0491; -0.504; ~0.524; ~0.565: ~2.522: ~2.698
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TABLEII
LYAPUNOV EXPONENTS OF THE UNIDIRECTIONALLY COUPLED CIRCUITS UNDER 5% PARAMETER VARIATIONS

WITH RESPECT TO THE NOMINAL VALUES

Perturbed parameter

drive system

response subsystems

1) « 0.461; 0.397; 0; 0; =3.651; =3.917 -0.499; -0.509; -0.510; ~0.544; -2.354; -2.653
2) B 0.453; 0.434; 0; 0; -3.694; —3.830 —0.499; -0.510; -0.510; —0.535; -2.332; -2.444
3) a 0.432; 0.405; 0; 0; =3.671;, —3.815 -0.500; -0.510; —0.510; —-0.545; —-2.556; —2.591
4) b 0.435; 0.403; 0; 0; -3.623; -3.862 ~0.499; ~0.509; -0.510; —0.544 ~2.035; -2.212
5) o, B ab 0.433; 0.396; 0; 0; -3.732; -3.915 ~0.499 -0.510; -0.511; -0.545; -2.613; -2.706
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