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ABSTRACT

This work provides an application of the Harmonic Balance (HB)
technique to the stability and bifurcation analysis of limit cycles
of dynamical systems amenable to be expressed in Lur’e system
form. A numerically efficient spectral approach is exploited to
evaluate the system limit cycle with an arbitrary number of har-
monic components, which are then explouted to perform a lin-
earized, small-change stability analysis of the limit cycle itself.
On the basis of a Mittag-Leffer expansion of the determinant of the
infinite matrix representing the linearized system, the limit cycle
Floquet multipliers (FM) are evaluated and exploited to perform
the bifurcation analysis. As an example of application, parameter
space bifurcation conditions for classical Chua’s circuit are thor-
oughly examined.

1. INTRODUCTION

Harmonic balance (HB) is a classical technique for studying limit
cycles in nonlinear dynamic systems [1], that has been successfully
applied to the design of electronic oscillators and of microwave
circuits [2, 3]. Most of the applications of HB techniques concern
the steady-state behaviour of systems presenting a single periodic
attractor, i.e. a limit cycle that attracts all the system trajectories.

In the last few years much interest has been dedicated to sys-
tems with complex dynamics, i.e. exhibiting several attractors and
bifurcation phenomena [4, 5): in fact complex systems are useful
for modeling a large variety of phenomena originating from chem-
istry, biology and ecology. Moreover it has been found that neural
networks and simple electronic oscillators may exhibit a complex
dynamics as well [6]. The global dynamic behaviour of nonlinear
systems presenting several attractors is normally studied through
time-domain techniques, that exploit rather complicated geomet-
rical concepts [7] and cannot be simply applied to the design of
electronic circuits.

Recently, some extensions of the HB technique have been pro-
posed for the study of the global dynamic behaviour and of bifur-
cation processes in complex systems.

In [8] the describing function technique (i.e., HB with a single
harmonic) has been exploited for predicting chaos and several bi-
furcation phenomena. Such a technique provides simple and use-
ful analytical results, but is not able to accurately predict all the
complex dynamic phenomena occurring in nonlinear circuits (see
for example the various fold, flip and homoclinic bifurcations of
Chua’s circuit shown in [9]). In [10] a method, based on the HB
technique, for detecting fold and flip bifurcations was proposed.
In [11] the local stability of limit cycles is analysed through the
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application of Nyquist’s theorem. In [12] bifurcations are studied
through a spectral technique based on the introduction of measur-
ing probes into the circuit. In [13] a spectral technique is exploited
for studying flip bifurcations in time-delayed systems.

The above approaches have the disadvantage of not providing
a method for computing the limit cycle Floquet multipliers (FMs),
the simplest tool for studying the stability of a limit cycle and for
detecting its bifurcations [7].

In this work, we propose a method for studying limit cycle
bifurcations, based on the evaluation of the FMs, through a HB
approach. Firstly limit cycles are detected by using the HB tech-
nique as introduced in [14], which is fast and efficient even for a
large number of harmonics. Then the FMs are expressed as the
roots of an algebraic equation of degree equal to the order of the
system; such an equation is derived through a suitable extension
of the technique proposed in [15]. Finally stability and bifurcation
conditions are easily established in terms of the coefficients of the
above algebraic equation.

As a case-study, we consider Chua’s circuit [6], a complex dy-
namical system that presents a rich dynamic behaviour, and we
show that our method is able to accurately identify all its signifi-
cant bifurcations. We remark that, through the HB approach de-
veloped in this paper, other dynamical systems (e.g. Duffing’s and
Rossler’s equations) can be investigated.

2. THEORY

Let us consider an autonomous nonlinear feedback system admit-
ting the Lur’e representation [8]:

L(D)z(t) + n[z(t)] =0 (1

where D = d/di is the time derivative, L(-) is a linear operator
and n(-) is a nonlinear function. Both the linear operator and the
nonlinear function can depend on several parameters. Since the
HB technique assumes a periodic solution to take place, z(t) can
be expanded as a superposition of harmonics (Fourier series):

2(t) = 2 (0),
k=0
where
zo(t) = Ao @
zr(t) = Agcos(kwt) + By sin(kwt).

For computational purposes, the Fourier series has to be truncated
to a suitable degree N high enough to represent accurately the
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solution z(t), thereby obtaining:

N
z(t) =D za(t) ©)
k=0

where the unknown variables to be determined through the HB
technique are the 2/V + 1 spectral coefficients A; and By, and
the solution period T' = 27 /w. Such 2V + 2 independent equa-
tions are obtained [14] sampling the dynamic equation (1) in 2N +
1 time samples uniformly spaced within the period-wide range
10, T}:

T

= —— =1,... 4
2N+1k k yeoo 3 2N 41 (C))

te

and imposing one of the coefficients (e.g., B1) of the fundamental
harmonic to be zero. According to [14], the dynamic equation (1)
is converted in 2V + 2 (nonlinear) algebraic equations involving
the aforementioned unknowns:

{ Q@)X +N (LX) =0 5)
By =0

where X = [4o A1 By ... AN BN]T, matrix Q is given by

rL0) 0 0 0. O 0 01
0 R L 0 0 0 0
0 -~ILi Ri 0 0 0 0
0 0 0 R I 0 0
Qw)=] o0 0 0 -I. R 0 0
0 0 0 0 0 ... Ry Iy
L 0 0 0 0 0 —In Ry
6

and Ry = Re{L(jkw)}, Iz = Im{L(jkw)}, & = 1,...,N.
Furthermore, matrix [~ is defined as:

F—I
C s
1 ’761,1 7s1,1 71 ’7:1,N
C
1 Y21 Y21 Y 2N Y 2,N
C S C s
1 Ynt+11 Yonsin Y eN+1,N TV 2N41,N
N

where:

q27p
Y p.q = cos(qutp) = cos (m_l)

S o q2rp
7 p.q = sin{quty) = sin <2N " 1)

Finally, ¥ (L7 X) = Ln (L' X) and o (L7} X) de-
notes the vector of time samples of the nonlinear function n(-).

In this work we shall show that the FMs can be computed as
the roots of an algebraic equation derived through an extension of
the technique proposed in [15] for the evaluation of Hill’s determi-
nant. Then, conditions for fold and flip bifurcations are expressed
as simple constraints among the coefficients of the above equation.

As a first step we consider a small perturbation Z(t) of the
limit cycle z(#) which has to satisfy the variational equation:

L(D)z(t) + g(t)z(t) = 0 1))
where
dn(¢)
() = ®
4 ey

which describes a linear periodic time-varying system, whose so-
lution can be expressed as [16]:

M
(t) =Y Hvi(t) exp(Ait) (10)

i=1

where M is the order of the dynamical system, H; are suitable
constants depending on the initial conditions and v; (¢) are periodic
functions of period T'; finally, A; are constant eigenvalues from
which the FMs are easily determined as exp(A:iT).

In order to determine the eigenvalues A; we substitute the generic
eigenfunction v(t) exp(At) into (8):

L(D)v(t) exp(At) + g(t)v(t) exp(At) = 0. 11

Notice that, although z(t) is represented in (3) by means of a finite
number of harmonics, the periodic function g(¢) is in general ex-
pressed by an infinite number of harmonics, since it is the deriva-
tive of a nonlinear function evaluated in z(t):

g(t) = Z G exp(jkwt) (12)

k=-o00

For the sake of simplicity we restrict our attention to the case
of a linear block L(s) = P(s)/Q(s), with deg(P(s)) = deg(Q(s))
+1 =M =3, i.e. the case occurring in Chua’s circuit. It is possible
to prove that the two FMs different from 1 are the roots of the
following second-order algebraic equation

ptap+b=0 (13)
where:
anN
a=——
ap
an = c1psi(ps2 — 1){psz — 1) (ps2 + pe3)

+ cappo2(ps1 — 1){pss — 1) (1s1 + ps3)
+ caprea(ps1 — 1) (ps2 — 1) (a1 + pa2)
ap = ps1psapisa(Crps1 (ps2 — 1)(ps3 — 1)
+ copsa(psr — 1)(ps3 — 1)
+ capsa(psr — 1) (ps2 — 1)]
_ 1
- Hsifs2f4s3

tsi = exp (—2Asm/w) 1=1,2,3. (14

The constants ci, c2 and c3 are the determinants of the infinite
matrices R i (z = 1,2,3), which are easily described in terms of
the matrix (infinite) diagonals D,, where ¢ is an integer running
from —oo to co; ¢ = 0 means the main diagonal, ¢ > 0 denotes
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an upper diagonal and ¢ < 0 the corresponding lower one. The
expressions for these diagonals are:

i G( M)(/\Sl)
i el 2)()\31)
1 G( ”(A.,,)
Dy= 10 D, = G—q g#0
1 G(l)(/\“)
! 6@ ()
1 G( M)()‘m)

(15)

where GP(N) = f(NGq, f(A) = [L(X + jpw) + Go] ™%,
Gq = f6Gq and

()\sl - 34)(Asl - A.95)

fO - n(Asl - 52)(/\31 - 33)

2 (As2 = Aaa) A2 = Ags)
fO h 77(’\82 - A31)(/\32 - >\s3) (16)
£ = (A3 = Asa)(As3 — Ass)

7"(*33 - )\sl)(ASS - ASZ)

Finally, (As1, As2, As3) and (As4, Ass) are poles and zeros, respec-
tively, of function fo(X); 7 is the residue of 1/ fo(A) for A = co.

The conditions for fold and period doubling (flip) bifurcations
are obtained by simply imposing that one FM equals 1 or —1 re-
spectively, i.e.

fold bifurcation <= 14+a+b=0

am

flip bifurcation <= 1—-a+b=0.

We remark that: (a) from a computational standpoint, the con-
stants c; are evaluated computing the determinant of matrix R,
truncating the infinite representation of g(t) to a finite number of
harmonics, which can be rather small since, owing to the structure
of B and to the definition of fi(A) given above, the infinite de-
termmant of R . is rapidly convergent (see [15], Sec. 2.8); (b) the
proposed method represents an improvement with respect to the
technique shown in [1] where the FMs are detected through the
solution of a complex eigenvalue problem and are provided in a
form that is not suitable for imposing bifurcation conditions.

3. APPLICATION EXAMPLE

As an example of application, we shall analyse the bifurcation
phenomena in a well known dynamical system: classical Chua’s
circuit {6]. This choice is supported by the complex dynamic be-
haviour of this system, thereby enabling a sound test for the HB
approach to bifurcation analysis. The dynamic equations describ-
ing Chua’s circuit can be written in terms of the following Lur’e

asymmetric cycle

=15

symmetric cycle

Figure 1: Parameter a vs. cycle period T for both asymmetric and
symmetric limit cycles. The HB system was solved with N = 21
harmonics and 8 = 15.

system representation [8]:
D®+(1+a)D*+ 8D +ap
a(D*+D+B)
where o and 3 are normalized parameters. We assume that the

memoryless nonlinear function n(-) be approximated as a cubic
nonlinearity [8]:

L(D) = (18)

n(z) = 7x+ 5% (19)

It is possible to show [9] that Chua’s circuit, as described by
the aforementioned functions, exhibits, for & < 7, two stable equi-
libria symmetric with respect to the origin of the state space. For
o = T a Hopf bifurcation gives rise to two asymmetric limit cy-
cles, which in turn are symmetric with respect to the origin since
the nonlinear system is odd. By further increasing «, a fold bifur-
cation occurs yielding a pair of symmetric limit cycles (one stable
and one unstable). We start our investigation for values of & and
B (e.g., @ = 8 and 8 = 15) for which the two stable asymmet-
ric limit cycles and the stable symmetric limit cycle coexist (see
{91, Sec. 3.2). By solving the HB system for & = 8 and 3 = 15,
the asymmetric and the symmetric limit cycles have been detected.
For 3 held fixed, both cycles have then been continued with respect
to the cycle period T'; therefore the nonlinear algebraic system (5)
is solved with X and a as unknowns. The values of « vs. the cycle
period T for @ = 15 are shown in Fig. 1, which has been obtained
with N = 21 harmonics (including DC).

Moreover, for both symmetric and asymmetric limit cycles
and for each value of o and T the FMs have been evaluated as
previously discussed. Several bifurcations have been detected and
shown in Fig. 1:

e the period-doubling bifurcation d, of the asymmetric limit

cycle, giving rise to the well-known spiral attractor;

e as period T is increased, the asymmetric limit cycle be-
comes unstable and undergoes a sequence of flip and fold
bifurcations. We have reported in Fig. 1 the first four bifur-
cations encountered by increasing the period T
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a flip bifurcation (denoted with d%) after which the
limit cycle returns to be stable;

- a fold bifurcation (denoted with f.) corresponding
to the first vertical tangent of the T(a) curve, after
which the limit cycle is again unstable;

— another fold bifurcation (denoted with £2) correspond-
ing to the second vertical tangent of the T'(c) curve,
after which the limit cycle return to be stable;

— another flip bifurcation (denoted with d?), that causes
the limit cycle to be again unstable.

The FMs, for the range of periods giving rise to the above
sequence of bifurcations, turn out to be real. They are re-
ported in Fig. 2: it is seen that the HB technique is able to
detect all the flip and fold bifurcations even if they arise for
very close values of the parameters.

the fold bifurcation f of the symmetric limit cycle, which
gives rise to a pair of symmetric cycles, one stable and one
unstable;

as period T is increased, the unstable symmetric limit cycle
undergoes a sequence of fold bifurcations for values of o
corresponding to a vertical tangent of the T'(a) curve. The
first two such bifurcations, indicated as fsi i = 2,3, are also
shown in Fig. 1;

a strong indication of the existence of a homoclinic orbit,
due to the fact that both curves exhibit a vertical asymptote.

We remark that starting from the bifurcation points detected from
Fig. 1, bifurcation curves can be obtained by continuation with re-
spect to 3, i.e. by solving (5) and condition (17) with X, 7" and «
as unknowns.

4. CONCLUSIONS

We have presented a HB approach for the study of limit cycle. sta-
bility and bifurcations in complex nonlinear systems and circuits.
The method is based on the evaluation of the FMs, through the
extension of the technique reported in [15] to generic Lur’e sys-
tems. The proposed HB technique has been applied to a rather
complex nonlinear system, that exhibits a large number of attrac-
tors and bifurcation phenomena: Chua’s circuit [6]. The most sig-
nificant flip, fold and homoclinic bifurcations have been accurately
detected. We remark that the above HB approach is also suitable
for studying distributed systems, which are not described by ordi-
nary differential equations.
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