Influence of the parasitics on the time delayed Chua’s circuit
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Abstract - The time-delayed Chua’s circuit (TDCC)
can be considered as a paradigm for studying the effect
of the parasitics on circuits described by difference equa-
tions. This paper discusses the effect of a small capacitor
C on the dynamics of the TDCC through the theoreti-
cal analysis of the characteristic equation in each region
of linearity. The main result is that any TDCC which
exhibits the period-adding route to chaos for C = ¢, still
continues to present this phenomenon even if a small
capacitor C is added to the circuit.

I. INTRODUCTION

A great deal of interest has been recently aroused by
the analysis and exploitation of circuits implementing
chaotic difference equations [1]. The dynamics of these
circuits is strongly influenced by the presence of reactive
parasitics, which may result in unexpected behaviors
[2].

In this work, we analyze the effect of the capacitor
C in the Time Delayed Chua’s Circuit (TDCC) shown
in Fig. 1. This circuit, for ¢ = 0, is described by a
difference equation which may exhibit chaotic behaviors
akin to those observed in dry systems, ¢.e. in absence
of viscosity [2]. For C # 0, the TDCC dynamics, now
defined by a nonlinear differential-difference equation,
can be completely different and is very difficult to be
studied due to the lack of a comprehensive analytical
treatment of these equations. So far, the TDCC has
been studied only through numerical simulations [5; 6].

The next section is devoted to a complete descrip-
tion of the circuit equations, while Sec.III contains a
qualitative analysis of the circuit dynamics supported
by numerical simulations.

II. CIRCUIT EQUATIONS

The TDCC and the Chua’s diode characteristic are
shown in Fig. 1 and 2, respectively, where the variables
involved in the analysis are also defined. The param-
eters of the circuit are the round trip delay 7' and the
characteristic impedance Z of the transmission line, the
slopes mg, m1, m_; and the switching voltage B), of the
Chua’s diode, the source voltage E, and the lumped lin-
ear elements C and G.

The equations describing the lumped part of the net-
work are:

O+ g(o(t) — B) +(5,0) = 0,
Glo(t) - v'(£,0)] = 7(4,0) ,

(1)

where g(-) is the piecewise ld'é}eat function represented
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Fig. 2. Cwrent-voltage characteristics of Chua’s diode.

in Fig. 2. As a consequence, the TDCC is a piecewise
linear circuit with three regions of linear operation, se-
lected by the value of vy = v — E. For vy < —Bp,
|v1] < Bp and vy > B,, the Chua’s diode operates on
its leftmost, central and rightmost linear branch, re-
spectively. In the following, these regions of linear op-
eration are indicated by R_1, Ro and R;. In the linear
region R; the function g(v1) of Fig. 2 is expressed by
g(vi) = mjv1 + Amy, where Am; = j(mg — m;)By,
and 7 = —1,0,1. For the sake of simplicity, in this
paper we assume m_; = my and B, = 1, so that
Amyj = j(mo — my).

The circuit equations can be recasted so as to be

suited to the numerical simulation by introducing the

voltage waves «(t,z) and b(t,z) associated to v'(¢,z)

and #'(¢, z):
v'(t,z) = a(t, z)+b(t2),
i(t,z) = lalt,2) —b(t,2)]/Z .

The input characteristic of the transmission line is then

(@)



effectively expressed by the constraint:

b(t,0) = —a(t — T, 0). (3)
Since the line variables are considered only at z = 0,
the z argument will be dropped hereafter.

The equations can also be conveniently normalized
by choosing the set of normalized input parameters
6,k;,T):

9%5(7} + Ap;[(r) — E]+ (Apo — Apj)j =
= (1—F)[E(T)' g]: 7=-40,1 (4>
br+1) = TH(r) - 501+ D)) )

where 7 = ¢/T, the tilde indicates functions of 7 and j
is the region of linear operation at time 7 selected by
9(1) — E. The other parameters are defined as follows:
0=C/(RT),{=2G, T =({-1)/((+1),

hy= T o 0,1 6
7 (+1)mj+ G J (6)
and 2
- 11—
il 7
PIT 2T —h; @)

For the sake of simplicity, the normalized transmission
line impedance ( is supposed to be positive, so that we
have |T'| < 1.

Since @ is proportional to C, effects of parasitic C
values on the circuit dynamics are studied considering
small 6 values.

TI1. THEORETICAL ANALYSIS AND DISCUSSION

HC=0,ie.,6 =0, the differential term of (4) van-
ishes and %(7) becomes an algebraic function of b(7).
In this case, (4) and (5) can be reduced to a non-
linear first order difference equation, 7.e., a mapping
&: I;(T) — b+ 1), whose properties define the system
dynamics.

The family of mappings for the circuit variable 5(1’)
is reported here for £ = 0:

b(r 4+ 1) = hib(T) + ARy, j=-1,0,1, (8)
where Ahj = ](ho - hj)(l -+ I‘)/[Z(P — ho)]. In the
above equation, j = 0 holds for |b(7)] < [bol, with bg =
(1+1)/[2(F — ho)]; 7 = —1 holds for b(r) < —by if
bo > 0 and for I;(T) > ~bg if by < 05 7 = 1 holds for
b(T) > bo if by > 0 and for b(7) < by if by < 0.

The stability properties of the fixed points of (8)
(those points satisfing b(T + 1) = 5(t)) depend on the
slopes of the mapping @, i.e., the parameters h;. It
can be shown that for || < 1 (and E = 0) no chaotic
behavior can be obtained for any value of h; [5]. A
chaotic dynamics of the TDCC with C = 0 has been
shown in (2] by introducing the voltage generator E.

The behavior of the TDCC is strongly influenced by
the presence of the capacitor. If C # 0 (i.e., 6 # 0),
#(7) is a state variable, solution of the first order dif-
ferential equation (4) having b(7) as the source term,
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and the whole problem is of differential-difference type.
In particular, (4) and (5) can be reduced to a first or-
der nonlinear differential-difference equation of neutral
type [5].

General results are scarcely available for problems of
this kind [2; 4]. In fact, owing to the infinite dimension
of the state space, the dynamics of the above equations
is unlikely to be described by analytical methods and
by standard techniques developed for finite dimensional
systems (e.g., Poincaré maps, detection of homoclinic
and heteroclinic orbits, etc.). There are, however, two
simple tools for a qualitative study of the dynamics of
such a system: the detection of the equilibrium points
with the analysis of their stability, and extensive nu-
merical simulations.

When the capacitor is added; the equilibrium points
do not change, but their stability properties may vary.
In fact, in the dynamical case, such properties are deter-
mined by the characteristic frequencies (hereafter called
eigenvalues) Ay; of the circuit in each region of linearity
j. They are solutions of the characteristic equation be-
low, which is obtained from (4) and (5) by eliminating
every source term and looking for a solution of the form
b(r) = byexp(Ar), 5(r) = v, exp(Ar), where b, and v,
are constants and A = A, + jA;:

eM(A+ Apj) =T(A+ Aw;), (9)

where

Apj = Ap;/8, Anj; =h;jAp;/T. (10)

Equation (9) has infinitely many roots, and it can be
shown that it defines a set of eigenfunctions which rep-
resents the solution of equations (4) and (5) completely.

A direct parametric analysis of the eigenvalue loca-
tion is prevented by the lack of an analytical expression
for the roots of (9). In order to gain some insight into
the effects of the parameter values, we have found the
regions of the parameter space where the circuit is sta-
ble, i.e., where all the eigenvalues have negative real
part. Then, this stability map is used as a guide for a
numerical study of the eigenvalue distributions as the
parameter space (8, h;,T') is explored.

In such a parameter space, C = 0 corresponds to 6 =
0; in this case the stability of the fixed points follows
from the h; values.

For C # 0 the stability regions can be determined
by resorting to Theorems 13.7 and 13.3 reported in [4],
and originally stated by S. Pontrjagin. Such theorems
give a set of conditions that has to be verified in order
to determine the range of the coefficients where all the
roots of a polynomial P(z,exp(z)) have negative real
part; the application of such results to equation (9) is
not trivial and requires a lengthy proof, which leads to
the following proposition:

Proposition 1: In each linear region R;, all the
roots of equation (9) with [T| < 1 have megative real
part iff, for any given value of T', parameters h; and 6
satisfy hj > 1 and 6 > 81(h;), or —1 < hj < T, or
hj < —1 and @ > 05(h;), where the curves 6; and 6,
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Fig. 3. Stability map in the (hj,6) plane for T' = 0.6. In the
dashed regions all the eigenvalues have a negative real part, while
outside the dashed regions at least one eigenvalue has a positive
real part.
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have the following parametric equation:

o= sin y 1-T?
T2l ~ycosy) I' ~ hy

B = 1-—-Tcosy (11)

cosy— T

and are defined for different ranges of the parameter y:
(12)
(13)

An example of stability map for I' = 0.6 is shown
in Fig. 3, where points in the dashed areas represent
parameter values leading to stable eigenvalues. The
value of ' affects the appearance of the map, but not
its structure, which is always composed of two stable
areas: one above the level h; = +1 and one below the
level h; = I'. Additional characteristic elements of the
stability map are the abscissae 6y = (14 I')/[2(1 —T)]
(where the §; curve intersects the h; = +1 boundary)
and 6, = /1 —T'?/(2arccosT') (the vertical asymptote
of 65 and 63).

The stability map offers a first insight into the effects
of the capacitor. For @ = 0 (Z.e., C = 0), the stable
region is composed of the segment |h;| < 1 on the h;
axis. When 6 takes a finite, non zero value, the point
representing the circuit parameters leaves the h; axis
and enters the (6,h;) plane. Figure 3 shows that, in this
transition, an equilibrium point remains stable if —1 <
h; < T, remains unstable (4.e., at least one eigenvalue
has positive real part) if |k;| > 1, and switches from a
stable to an unstable state if I' < h; < 1. Tt is worth
remarking that the jump from stable to unstable state
happens for any arbitrary small 6. .

Furthermore, a transition from unstable to stable
state can be obtained for |h;| > 1 by large enough ca-
pacitors (i.e., by large enough 6 values), whereas the
equilibrium point remains unstable for any positive value
of § f T < h; < 1. As a conclusion, the stability
map highlights how the introduction of the capacitor
C in the TDCC can completely change its dynamics

6,: 0<y<arccosT

B2: arccos' < y< .
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and points out the importance of parasitic C' values for
particular combinations of h; and T'.

Further information on the eigenvalue distribution
can be obtained by the numerical computation of the
eigenvalues [7]. The stability map and the numerical
analysis carried out in [7] provide a detailed qualita-
tive knowledge of the eigenvalue location for the whole
parameter space, allowing to identify the parameter val-
ues for which interesting dynamical behaviors are most
likely to occur. As an example, they point out that
the unstable behavior for § > 0 and T' < h; < 1is
due to a positive real eigenvalue. It turns out that this
real eigenvalue is proportional to —Ap; and hence to
1/6; in this case, therefore, the smaller is the capaci-
tance, the stronger is the instability of the equilibrium
and the presence of any parasitic capacitance cannot be
neglected at all.

A detailed analysis of the eigenvalue distributions for
6 # 0 and @ = 0 [7] points out that in some cases the
displacement of the eigenvalue distributions can be con-
sidered a continuous function of 6. In these cases, it
is reasonable to conjecture a continuous variation of
the dynamics as 6 appears, More precisely, we say
that, in a region R;, the eigenvalue distribution for a
small value of § may be considered a continuous evo-
lution of that corresponding to 8 = 0 if the eigenval-
ues Ay satisfy limg_,o+ Re[Ar] = Inlh;| Vk (where
In |h;| is the real part of the eigenvalues for § = 0)
except for a finite number of eigenvalues A, such that
Lirg_, o+ Re[A,] = —o0. If the above conditions are not
satisfied, we say that there is a discontinuity in the
eigenvalue distribution as @ appears, essentially due to
a large positive eigenvalue. If for 6 = 0 the eigenvalues
have also positive real part, we say that the disconti-
nuity takes place with no change of sign (NCS) in the
real part; if this is not the case, the discontinuity is ac-
companied by a change of sign (CS) of the real part.
All the possible combinations of h; values are reported
in Tab.1, which points out that if a CS-discontinuity
occurs in a region which exhibits a stable equilibrium
point, then the dynamic behavior for small 6 has an
abrupt change with respect to the case 6 = 0 (see rows
2, 3, and 4). On the contrary, for hg < T and hyy < T
(see row 1 of Tab. 1), since the eigenvalue distribution
varies continuously with 6, we expect a similar dynamic
behavior both for = 0 and small §. Both these con-
jectures have been verified by several simulations.

As an example we report the simulations for a pa-
rameter set belonging to row 1 of Tab. 1: hy; = 0.49,
I' = 0.60, E = 0.78 and hq within the interval [—4, —1].
The simulation of the TDCC has been performed by
using a Runge-Kutta algorithm with fixed step and
starting from a constant initial condition of the type
9(0) = 0.1V and 5(7‘) =0, 7 €]0,1]. For § = 0, the
system exhibits the period-adding phenomenon [2]. By
assigning a small value to #, a similar succession of limit
cycles, separated by chaotic regions, may be again ob-
sexved as hg is varied. Of course, due to the small but
finite value of 6, the extension of these regions may vary
from that of the case § = 0. Assuming # = 0.01, the
simulations of the TDCC show a limit cycle of period



Case etg. distribution dynamic behavior
RO R:El R() R:l:l =0 small 6
ho<T hyy <T c C similar dynamic behavior
T<ho<l |T<hpi<l| CS cSs one globally asymptotically | unstable
. stable equilibrium point, be-
longing either to Rg or to
R+1, depending on the value
of E
P<ho<1 hii>1 cs NCS locally stable if there exists | unstable
one equilibrium point in Ro;
unstable otherwise
ho>1 I'<hpyr1 <1 | NCS cSs completely stable, with one | unstable
or two stable equilibrium
points belonging to R4
ho > 1 hyy > 1 NCS NCS unstable unstable

Table 1. Comparison between the eigenvalue distributions and the dynamic behaviors for § = 0 and for small 6's.

The meaning of

the achronima are the following: C: continuity; C'S: discontinuity with change of sign of the real part; NC'S: discontinuity without

change of sign of the real part.

2.2T for hg = —1.2 (Fig. 4(a)); increasing ho, a chaotic
region is encountered and for hg = —2.6 the chaotic
attractor of Fig. 4(b) is observed. A further increase
in hg reveals a new periodic window; Fig. 4(c) shows
the limit cycle of period 4.47" obtained for hy = —3.05.
Continuing in increasing hg, a new chaotic region ap-
pears (Fig. 4(d)).

As a concluding remark, we would like to point out
that the result presented above is general. In fact, in [2]
it is proved that the existence of the period-adding phe-
nomenon requires hg < —1 and 0 < hy < 1; further-
more, for the mapping ® to be single-valued, parame-
ters h; have to satisfy ho < T and hy; < T, 0or ho > T
and hyy > T [7]. For |T'| < 1, the above conditions
are equivalent to those of row 1 of Tab. 1, thereby im-
plying the continuity of eigenvalue distributions. This
would suggest that any TDCC which exhibits the pe-
riod adding phenomenon for 8 = 0, should present a
similar dynamics even if a small capacitor is added to
the circuit.
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Fig. 4. Capacitor voltage as a function of 7 for § = 0.01 and after
a transient of 1907 (a) periodic attractor of period 2.2T, hg =
—1.2; (b) strange attractor, hg = —2.6; (c) periodic attractor of
period 4.4T', hg = —3.05; (d) strange attractor, hg = —3.9.



