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Abstract

A graphical approach is developed in this paper for detect-
ing the period-doubling bifurcation emerging near the Hopf
bifurcation point of a time-delayed feedback system. The
new algorithm employs higher-order harmonic balance ap-
proximations (HBAs) for estimating the predicted periodic
solutions of the system. Prediction of the period-doubling
bifurcation is accomplished using a type of distortion index
based on some information about the higher-order harmon-
ics. The time-delayed Chua’s circuit is used as an example
for illustration.

1 Introduction

In the last two decades, there has been increasing interest in
studying the coexistence of periodic and chaotic behaviors
in nonlinear dynamical systems such as nonlinear circuits.
Investigation of complex systems with multiple equilibria,
multiple periodic solutions, and particularly chaotic behav-
iors has posed a real challenge to both analysts and engi-
neers. In order to carry out qualitative analysis, it is prefer-
able to have simple models that possessing such complicated
but typical features, e.g., a simple time-delayed feedback
system can have very complex dynamics. A notable fea-
ture of such systems is that they are described by hybrid
types of dynamical equations such as difference-differential
or functional differential equations, which are intrinsically
complicated in terms of dynamical behaviors [1]. A rep-
resentative circuit of this type is the time-delayed Chua’s
circuit (TDCC) (2,3]. The TDCC has typical chaotic dy-
namics, and can be used in many applications such as lab-
oratory models for living neural networks, as a vehicle for
bifurcation and chaos control, and for chaos synchronization
with application in secure communications.

In this paper, we show how the analysis of simple
time-delayed systems can be carried out by using engi-
neering frequency domain techniques and harmonic balance
approximations. First, the formulation of a general set-
ting for time-delayed systems, studied in [4], is extended
to difference-differential equations of the neutral type. A
simple algorithm is then developed for predicting the ap-
pearance of period-doubling bifurcations emerging near the
Hopf bifurcation point of the system. The proposed graph-
ical analysis method along with higher-order HBAs is ap-
plied to predict the occurrence of the first period-doubling
bifurcation, where the distortion index [3,5] is used for com-
putation. The TDCC is finally simulated for testing and
illustration of the new algorithm.

2 HBA for Time-Delayed Nonlinear
Feedback Systems

Consider the following parametrized time-delayed nonlinear
differential equation:

#(t — 1) + Ao(p)z(t) = Ax(p)x(t)
+Aa(p)z(t — 7) + B{p)g (C(u)z(t — 7); p), (1)
y(t) = C(p)z(t),

where Ay, A;, and A; are n X n matrices, Bisan n X r
matrix, C is an m X n matrix, 4 € R is the main bifurcation
parameter, y € R™ is the system output, u = g[C(u)z(t —
7); ) € R is the system input; g : R™ = R" is a smooth
(C**!', p = 1,...,q) nonlinear function, and v > 0 is a
time-delay constant.

The first step in applying the Graphical Hopf Method
(GHM) is to recast the system into the Lur’e form by defin-
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ing (see Fig. 1.a)
e=—y=—Cr,

G(s; ) = C[s(exp(=s7) + Ao)

- (2)
—A; — Az exp(—s‘r)] lB,
u= fle(t — r);p] = g[Ca(t — ) ).
The equilibrium solution é is obtained from
G(O;p)flesp) = e, (3)
and its linearization around the feedback is given by
J exp(—sT) = of exp{—sT). (4)
6e e=é
The characteristic function can be written as
det [A] — G(s;pu)J exp(—sT)] = 0. (5)

A Hopf bifurcation arises when one eigenvalue b passes
through the point (—1+ 01) for a given value of the main bi-
furcation parameter, pg, and when s = iwy. The emerging
periodic solutions are approximated by

2q
et) =é+R {Z E* exp(iku')t)} , (6)

k=0

where R(:) denotes the real part, { = /=1, & is the funda-
mental frequency, ¢ = 1 (second-order HBA), ¢ = 2 (fourth-
order HBA), and so on, and E* are complex numbers in the
kth harmonic, satisfying

E*exp (ikd(t — 7)) = E} exp(ikirt), (7)
with subscript d standing for delayed quantities.

Suppose the main bifurcation parameter p is fixed.
The harmonic balance approximation method gives the fol-
lowing relation after equating the output of the linear plant
(—G (ikw; p) F¥) with the predicted periodic input (E*) to
the nonlinear path, i.e.,

Ek='—G(’kwal‘)F:’ k=0’172)"'»2q3 (8)

where F¥ are the Fourier coefficients of f(e;u), depending
on the higher-order partial derivatives of f(e; ) around the
equilibrium. Assuming the standard filtering hypotheses of
the linear transfer function, we can write

— G (ikw;p) F¥ 20, k=2g+1,-- . 9)

In order to have an indication of the error, we open the
feedback path at e(t) and input a test signal e, (¢) (obtained,
for instance, from a second-order HBA). Then we can define
a measure for the error in filtering higher-harmonics by the
linear transfer function (and in the truncated Taylor series).
The measure is called the distortion index, A, and is defined
by [3,5]

A llealt) = [f(ea(t — T)Gsiplll _ llea(®) = es ()l
flea (@Il llea®ll
(10)
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where ||-|| is a suitable vector norm. Suppose that ¢ = oco.
If e4(t) = esruc(t) is a true periodic solution of (1), then it
is a solution to the infinite harmonic equation set (match-
ing ey(t) exactly) and we have A = 0. So the distortion
index can be used as a measure of the difference between
the predicted limit cycle and the true periodic orbit.

The GHM comprises four sets of formulas, labeled L,
(g = 1,---,4), that provides a solution to the harmonic
balance set of 2g + 1 equations with increasing accuracy,
through the evaluation of the expressions

Miwip) = -1+ Y &(w)™ =: L,, (11)
k=1

where A(iw; ) is the eigenvalue of G (iw; p) J (1) closest to
the critical point (—1 + i0), the complex numbers & (iw)
(used for calculating the amplitude and frequency of the
periodic solution) are defined in {4], and § is a measure
of the amplitude of the (predicted) limit cycle. Then, in
terms of the solutions (6,w), (g = 1,---,4), the values of
E* (k= 0,-:-,2q) can be obtained. In this case, a version
of the GHM for time-delayed systems is needed. We note
that this can be obtained from the general formulas for sys-
tems without time delays [4] by simple corresponding modi-
fications with the additional time-delayed term exp(—ikwT)
(for details, see [6]).

In this paper, Eqn. (11) is solved exactly using the
technique introduced in [7). Although computationally this
approach is more time-consuming as compared to the one
derived in [4], it provides better approximations of the pre-
dicted limit cycles and, more importantly, gives significant
insights for the period-doubling bifurcation phenomena if
the amplitude 8 is less than 1. To predict period-doubling
bifurcations, the algorithm is designed with four steps:

Step 1: Find the exact solution pair (3, §) of the amplitude
locus L;(w,8, ) and frequency A(iw,pu), for a given value
of p in the proximity of the Hopf bifurcation point (w = wo,
8 =0, p = po). Vary the value of u to obtain the branch of
periodic solutions emerging from the Hopf bifurcation point,
until § =1 and s = He=1.

Step 2: Find, if it exists, a second solution pair (Jpd, fpa)
between Ly(-) (L2(-), and so on) and A(-), provided that
6,4 < 1 in the same range of variation of the parameter
H, te, po < p < po=1 (or pe=1 < p < po), such that
(:de ~ L:'/Z.

Step 3: Evaluate the distortion index A for ey (t) (Hopf
solution) and epq (t) (period-doubling solution). If the dis-
tortion index A,q4 (up4) (of the period-doubling solution) is
smaller than the distortion index Ay (upq) (of the Hopf so-
lution), at least for one approximation L, (¢ = 1,---,4),
then it is likely that a period-doubling bifurcation exists
when ppq satisfies Apg (pd) < An (ppa) and Bpd (ppd) =
min Apq (u).



3 A Circuit Example
The time-delayed Chua’s circuit is (see [2,3])

p(l4¢) 2t 4 (1~ )20 42 (r 41)
+z(n)+ (14 g (r+1))+(1-Cg(z(r) =0,

where 7 is the time variable normalized with respect to the
time-lag (TL) delay, T'; g(-) is the nonlinearity in the Chua'’s
diode approximated by a cubic function g(z) = (-mz +
kz*)/G, with constants m and k, normalized with respect
to the conductance G; ( = ZG, with the TL characteristic
impedance Z, 4 = C/GT, and C is the capacitance. The
transfer function G (s;u) of the TDCC is

Gsip) = 1
W E A+ Oexp8) +r(1—C)ls +exp(s) + 1

and the Jacobian J of the nonlinear feedback function

f(e) =: g(z), after defining e = —=z, is

J=-(1+0) [g-i’g—] exp(s) = (1) [g-%—] ,

where é are the equilibrium solutions of the circuit, that is,
&1 = 0 and é®% = £1.5. We only analyze the system
dynamics around the equilibrium solution &) = —1.5.

Under this framework and using the GHM, a Hopf
bifurcation can be detected to occur at po = 0.192303 and
wo = 2.349178. The amplitude of the limit cycle emerging
from the Hopf bifurcation is predicted using L, and Lo,
with a comparison to the actual amplitude (computed by
numerical integration), as shown in Figs. 2 and 3, respec-
tively. Notice that while L;-predictions are accurate only
for those values of u near po (see Fig. 2), L2 provides an
almost indistinguishable approximation for the limit cycle
beyond the period-doubling bifurcation point (obtained by
capturing the unstable periodic solution, see Fig. 3). In
these figures, the values of the period-doubling bifurcation,
predicted by using L; and Lj-approximations respectively,
are indicated as p; and p3 (in Figs. 2 and 3), respectively.

The GHM, in this case, also provides a second solu-
tion of the amplitude, 8,4 < 1, and frequency, w,s & 4.
In Fig. 4, plots of the distortion index of the predicted
Hopf and period-doubling orbits are shown, for L, and L,-
approximations, respectively. In coincidence with Figs. 2
and 3, the distortion indexes A here indicate that the L;-
predictions are better than the L, ones, for both Hopf (L1x
and L,y) and period-doubling orbits (L1,q4 and Lpqg). It is
observed that the A for period-doubling predictions (Ljpq
and Ljpq) are smaller than that for Hopf predictions using
L, in the range [0.163,0.17] of 4. This implies that period-
doubling predictions are all close to the true period-doubling
orbit. The values of A for predicting the Hopf bifurcation
using L, are the smallest within that range; however it must
be noted that these predicted results are close to the unsta-
ble Hopf limit cycle rather than the stable period-doubling
orbit. Also, it has been observed in simulations that the

minimum value of A for period-doubling predictions indi-
cates a u value near the critical value of p,q = 0.166 which
generates a period-two limit cycle.

As can be seen from Figs. 3 and 4, the outcome of L,
gives a very good prediction for the Hopf limit cycle. Note
that when a system undergoes period-doubling bifurcations
the Hopf limit cycle at the frequency wy suffers an infinites-
imal periodic deformation with frequency wpe = =f£. In this
case, the following numerical experience can be performed:

Step 1. Plot the curves Ay (u) and A, (u) for the range
p € [0.1915,0.163], where Ayy (u) is the distortion index
of the L;-approximation of the Hopf limit cycle, i.e.,

eag(tiu) =+ R {Z E* exp(ikwt)}

k=0

and A, (u) is the distortion index of the test signal

2
E+R {Z E* exp(ikwt)}

e(tip) =
k=0

2 .
+eR {Z Ekexp(icgig)} ,
k=1

where € < 107 (a arbitrarily chosen small number). Here,
the test signal has four harmonics instead of eight, due to
implementation, i.e., the software computes the distortion
index using up to four harmonics for the input signal e, (t).

Step 2. Find the value of u, that satisfies A, (u4,) <
Az (pg) and A, (p,) is a minimum of A, (¢). The value
ft; can be considered as an empirical guess of the critical
value p,q4 at which the period-doubling bifurcation occurs.

Figure 5 shows the result of this graphical analysis
procedure, with € = 10™°. The value u, = 0.166 is equal to
the critical value ppq for which a period-two limit cycle is
observed in the simulation.

4 Conclusions

In this paper a graphical and computational approach has
been developed for predicting period-doubling bifurcations
near the Hopf bifurcation point of a nonlinear system.
When applied to the time-delayed Chua’s circuit, the pre-
dictions have shown to be correct and accurate. This
method is convenient to use since all needed analytic for-
mulas, computational tools, and computer-graphic software
are available and well-tested.
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Figure 2: Simulation (solid line) and L, approximation (dashed line)
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Figure 3: Simulation (solid line) and L, approximation (dashed line)
of the periodic solution branch showing the prediction of period-doubling bifurcation
( uz) with respect 1o the real value ( s ).

0.03
a4
0.02 _/L, »
<L )
0.01
W‘ P /1

0 0165 017 0175 018 0185 019

Figure 4: Distortion indexes for the predicted limit cycle and period-doubling orbit
using L, and L; approximations.
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Figure 5: Distortion indexes for the predicted limit cycle and a
period-doubling perturbation using L, approximation.

of the periodic solution branch showing the prediction of period-doubling bifurcation

( u) with respect to the real value ( pis ).
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