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Normal Form Analysis of Chua’s Circuit with
Applications for Trajectory Recognition

Edward J. Altman, Member, IEEE

Abstract—Nonlinear analysis techniques are applied to Chua’s
circuit equations in which the piecewise-linear characteristic is
replaced by a cubic nonlinearity. Center manifold theory is
used to derive a reduced order expression for Chua’s circuit
near the equilibria. Normal form theory is applied to simplify
the form of the dynamics on the center manifold. Closed-form
expressions for the normal form coefficients are obtained in
terms of the dynamics on the center manifold. A one parameter
bifurcation function is derived from the normal form expression
that describes the amplitude of stable limit cycles transverse to the
Hopf bifurcation curve. The results of the analysis are illustrated
by an array of Chua’s circuits used for trajectory recognition.

I. INTRODUCTION

RADITIONAL hand gesture recognition methods rely on
Tthe frame-by-frame analysis of a sequence of images to
determine the motion trajectory of the hand. Recognition is
typically accomplished by matching the space curve of the
input trajectory to a set of reference space curves. Additionally,
hand gestures exhibit considerable variation in the shape of
the space curve and the speed of the motion. Consequently, a
class of motion trajectories must be associated with a single
gesture, thus further complicating the recognition problem. An
alternative approach, which accounts for the variation among
gestures, is to view each class of trajectories as motions
constrained to a manifold surface in 3-D space. Similarly,
nonlinear dynamical systems evolve with time along stable
manifold surfaces according to a set of rules expressed as
differential equations. By a suitable mapping of the input
trajectory onto the dynamical system, the recognition of a
motion trajectory as a member of a particular class reduces
to the identification of the corresponding manifold surface as
both trajectories evolve over time. The fundamental detection
problem concerns the use of motion trajectories from hand
gestures to drive the dynamical system onto an attracting
surface.

In this paper, center manifold theory and normal form theory
are used to relate the local behavior of Chua’s circuit to the
input trajectory to be recognized. The relative simplicity of
Chua’s circuit and the ability to generate a large variety of
behaviors in this single circuit motivate the choice of this
system [1]. The piecewise-linear characteristic is replaced
with a cubic nonlinearity in order to apply the formal meth-
ods of nonlinear analysis. The analysis procedures are based
on diffeomorphisms (smooth, invertible transformations), and
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therefore, the inverse transformations can be used for the
design of new dynamics from the center manifold or normal
form representations.

The real-time recognition of motion trajectories for hand
gestures relies on the use of the hand position as a function
of time to drive the dynamical system toward an attracting
surface. Chua’s circuit is known to undergo a series of
bifurcations from fixed points, to limit cycles, to a cascade
of period doubling oscillations leading to chaotic oscillations
in the vicinity of the center manifold [1], {2]. The rapid
entrainment of the chaotic system to an external signal having
a trajectory near the center manifold surface provides the basic
mechanism for trajectory recognition.

The recognition of many trajectories requires the use of
many dynamical systems. When these systems are arranged in
a 2-D array, then the variation of responses to the common
input trajectory creates a spatial pattern. This spatial pattern
is subsequently used to recognize the input trajectory. The
significance of this approach is that the recognition of multiple,
complex trajectories is reduced to the problem of recognizing
static patterns generated by the array.

The use of chaotic oscillations for the recognition of hand
motion trajectories is motivated by several factors. First,
the stable states of linear systems have only fixed point or
periodic orbits, whereas nonlinear systems can have quasi-
stable states that are surfaces (which are also called attractors
or stable manifolds). Thus, nonlinear systems are useful for
recognizing families of trajectories occurring on surfaces in
3-D space. Second, chaotic systems are highly responsive to
external inputs, thus providing rapid entrainment to the driving
signal. Finally, chaotic systems are able to rapidly move from
one region of the state space to another. We envision that
this property will be useful for detecting when one motion
trajectory ends and a new trajectory begins in the recognition
of continuous gestures in sign language.

Recent advances in the analysis of Chua’s circuit as a
nonlinear oscillator provide a mathematical basis for the
design and application of dynamical systems [3]. An additional
motivating factor for the use of Chua’s circuit equations as
a model dynamical system is that it has recently become
possible to implement this circuit entirely in CMOS [4]. Thus,
large-scale production of this circuit is now possible.

The organization of this paper is as follows. The nonlinear
analysis of Chua’s circuit is presented in Section II. The
derivation of the center manifold surface and the computation
of the normal form using Ushiki’s method are presented in
detail. Closed-form expressions for the normal form coeffi-
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Fig. 1. Cubic nonlinearity of Chua’s circuit equations.

cients in terms of the dynamics on the center manifold are also
given. In Section I11, a 1-D bifurcation function describing the
amplitude of limit cycle oscillations is derived from the normal
form expression. The preliminary results for the application of
this theory for real-time hand gesture recognition are discussed
in Section IV.

II. NORMAL FORM COMPUTATION

In the study of the local behavior of solutions of nonlinear
differential equations, the choice of coordinate systems plays
a major role in identifying the qualitative properties of the
flows. The normal form is considered as the simplest member
of an equivalence class of vector fields, all exhibiting the same
qualitative behavior near the equilibria of the system. The
basic approach to constructing the normal form equations for
a dynamical system is based on the computation of nonlinear
transformations that systematically reduce the coupling among
low-order terms in the original dynamical system. Recently,
Ushiki has introduced the use of infinitesimal deformations to
incrementally transform the vector field into a normal form
with the fewest possible coefficients [5]1-[7].

2.1. The Dynamics

Bifurcation theory is applied in this paper to analyze the
dimensionless form of Chua’s circuit equations [8]-[11]

&= oy — f(z)]
g=z—-y+=z (n
z=-Py

where
f(z) = (m1 + 1)z + %(mo —m)[lz+1 -z -1]. Q@

In most previous analysis, the parameters are fixed with the
values mo = —% and my; = —3, and (1) is treated as a
two-parameter dynamical system with o and (3 as bifurcation
parameters. In this paper, we examine the case where f(z) is
a cubic function

f(@) = oz + arz® 3

in which a least squares approximation to (2) yields ¢o = —é
and ¢; = %. The shape of the cubic nonlinearity of f(z) is
illustrated in Fig. 1.

The first-order normal form concides with the Jordan normal
form at an equilibrium point. Chua’s circuit has three equilibria

at P, = (0,0,0) and Py = (i\/_—l_?’o,q: /—“_126“). Near
the equilibrium P, we have the linearization

acy — 3(60 -+ 1) a 0
M= l)flpJr = 1 -1 1 4)
0 -8 0

If @ and 3 are chosen such that (4) has a pair of complex
conjugate eigenvalues o + iwg and a real eigenvalue -, then
the Jordan form

U o —-wg 0] [|u fu,v,w)
vl =|lwg o O v |+ | g(u,v,w) 5)
L 0 0 ~]|w h(u,v,w)

has the linear part in block diagonal form and the higher order
nonlinear terms are expressed by the functions f(-), g(-), and

h(-) 112]).

2.2. Transformation Theory

The equilibrium of the vector field is said to be hyperbolic,
if it does not contain any eigenvalues with zero real part. Ac-
cording to the Hartman-Grobman theorem [13] the vector field
near a hyperbolic equilibrium can be accurately characterized
by its linearization. In order to study the Hopf bifurcation near
o = 0, it is convenient to treat ¢ as an additional variable
and study the effect of variations in this new variable. The
augmented system now has both central eigenvalues, which
lie on the imaginary axis in the complex plane, and noncentral
eigenvalues with nonzero real part. A systematic method for
constructing a reduced order vector field by eliminating the
noncentral eigenvalues is provided by the center manifold
theorem [13], [14]. This vector field consist of an invariant
manifold called the center manifold, which is tangent to the
center eigenspace at the equilibrium of the system.

The computation of the second-order normal form assumes
that the equilibrium has been translated to the origin. The
normal form computation requires that the dynamics be pro-
jected onto a reduced dimensional space called the center
manifold. The basic idea for calculating the center manifold
is to find a nonlinear projection of the original state space
onto a reduced space where the complicated dynamics occurs
[13], [15]. We seek a lower dimensional approximation for the
Jordan form of the model dynamics expressed by (5). In order
to examine Hopf bifurcation phenomena in this system, we
create a suspended system [13], [15]

U 0 —-wo 0 O07Tu ou flu,v,w)

9] |we 0 0 0 v ov g(u, v, w)

s1=1o o ooflla|T]o|T| o

w 0 0 0 ~JLlw 0 h(u, v, w)
(6)

by treating o as an additional variable with the condition
& = 0. The term o is the real part of the complex conjugate
pair of eigenvalues of the Jordan form that will later serve as
a bifurcation parameter.

The surface of the center manifold is described locally by
the nonlinear graph [16]

)

w = S(u,v,0).
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Fig. 2. Center manifolds at P4 with limit cycle oscillations on the manifold
surface.

Fig. 3. Limit cycle oscillations of Chua’s circuit in the reduced-order space
of the center manifold. (a) Temporal profiles of the center manifold variables
u (solid) and v (dashed). (b) Phase plot in the wv space.

A view of the two center manifolds associated with P, and
P_ projected back into the zyz coordinates of Chua’s circuit
is illustrated in Fig. 2. The limit cycle oscillations of Chua’s
circuit in the uv coordinates of the center manifold in Fig.
3 show that the complex limit cycle trajectories in the zyz
space have a simple form in the wv coordinate space of the
center manifold.

All of the above transformations are diffeomorphisms
(smooth, invertable maps), and therefore, the local dynamics
‘near the equilibria of the original system are topologically
- equivalent to the dynamics on the center manifold. Since
the trajectories of the original system converge to trajectories
on the center manifold surface, the behavior of the system
can be modified by reshaping the center manifold surface
and transforming back to the original coordinates. The
projection of the dynamics onto the center manifold provides
a mechanism for modifying the vector field to optimize the
response of the system to the input trajectory to be recognized.

If the dynamics on the center manifold is stable, then the
trajectories on the manifold are related to trajectories in the
first order normal form (Jordan form) in (5) by

z(t) = u(t) + O(e™)
y(t) = v(t) + O(e™) ®)
2(t) = S(u(t),v(t),0) + O(e™)

where v > 0[14], [15].
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2.3. Ushiki’s Normal Form

In the remainder of this section, we summarize Ushiki’s
refinement of Takens’ normal form computation for nonlinear
vector fields [5]-[7]. Here, we present only that part of the
transformation theory required for the local analysis of limit
cycle oscillations on the center manifold of Chua’s circuit.

Consider the class of nonlinear vector fields in R® of the
form

U 0 —wo O0ffu fe(u,v,0)
’l’) = Wo 0 0 v + 96(u7 v, 0) (9)
c 0 0 0]|o 0

obtained by substituting the nonlinear graph w = S(u,v,0)
into (6). Since the normal form computation is an iterative
transformation involving terms of increasing order, we shall
use the notion of k-jets to specify the terms of a specific
order. The k-jet of a function f(z) is denoted by f*(z)
and is obtained by truncating all terms of the Taylor series
expansion of degree greater than k. The notation f;(z) denotes
the sth-order terms.

Using the k-jet notation, the nonlinear vector field may be
represented as v = v*~1 +hy,, where %71 is the (k—1)-jet of
v, and hy contains terms of degree k or higher. The recursive
algorithm for deriving the normal form of v is based on the
concept of infinitesimal deformation of the vector field. From a
lemma in differential geometry [6], we know that for a vector
field v, a generator function Y satisfying the constraint

[v 04" =0

transforms the vector field v while leaving the (k — 1)-jet of
v* unchanged [6). The Lie bracket operator |-, ]

[Y,v] = (Dv)Y — (DY )v

(10)

an

has been used for notational convenience [17], [18], and
the symbol D represents the differential operator. Under the
constraint of (10), the kth order normal form problem on H},
is described by the differential equation [6]

%hk(r) = —[Yk,uk"l + hk(’l')]k
for hi(7) € Hj consisting of all homogeneous vector fields
of order k, and [Y,v], denotes the kth-order part of the Lie
bracket operator. The solution h(7) characterizes the infini-
tesimal deformations of the vector field; hence, the simplest
normal form corresponds to the simplest solution to hg(7).

The Lie bracket operator is used to construct a set of basis
vectors that identify a subspace By in Hy. The vector space
can be decomposed into Hy = By + Gi, where Gy, is the
complementary subspace to By in Hy. The kth-order normal
form problem in By, can be transformed into the corresponding
problem

(12)

igk(t) = —’n'k([Yk_l,I/k—l +gk(t)] k) (13)

dt

on the lower dimensional space G [6]. The map 7 : H —
G, projects the elements in Hjy onto the nullspace Gj. It
will be shown in the next section that this formulation of the
normal form problem can be used to generate a linear system
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of differential equations in the normal form coefficients which
can be easily solved.

2.4. Computation of the Normal Form

According to the preceding theory, the kth-order normal
form problem reduces to finding a solution to (13) for some
generator function Y and vector field v. The normal form
computations of Takens [13] and Ushiki [6] make coordinate
transformations in the complementary space Gy in order to
simplify the form of the dynamical system. Taken’s method
assumes that the coefficients in the transformation are fixed and
then uses rescaling to simplify the normal form coefficients. In
Ushiki’s method, the coefficients are parameterized so that a
particularly simple solution for the system of ODE’s generated
by (13) can be chosen for certain parameter values.

The projection of Chua’s circuit onto the center manifold
at Py

T 0 —wg O T
i|=le 0 ofly|+0(lew.f) a4
z 0 0 0]|=

with the variables relabeled as z, v, z has the 1-jet vector field
L1

T = —woy
Y = woT (15)
2=0

on R3. This vector field can be conveniently represented in
partial operator notation

0

Yo +w5§ (16)

where, for notational simplicity, it is assumed that wo = 1.
The algorithm for computing the normal form follows.

Step 1: Construct the Basis for Hy: The vector space H;,
of homogeneous vector fields of degree k is determined from
the linear map

Lk:YkEHk—)[Yk,lll]EHk an
applied to the vector field v; and the basis of homogeneous
polynomials

l+m+n=k.

(18)
For the second-order normal form problem, the basis for Hy
consists of 18 monomials

Y=<z z—a—z zzx z 9
k — 1Ym naxv 1Ym naya 1Ym naz

1? 35 zyagay 3833 Zz%w)yzaza

z? 3y LYoy 73/ Em Y25,
Ve oy oy

AN N I Y

Y, = (19)

220
42 &
_Z )
249
8z
expressed in partial operator notation. The linear map Ly may
be represented in matrix form in which the ith column contains

the coefficients of the linear map Lo applied to v; and the ith
basis vector in Ya. The subspace Bs consists of all elements

of the form [Y2, 1] € Hy. For example the map L applied
to the three monomials xy dam, TY5 By and Ty Hz in Y5 yields

a 0
[ﬂﬂy%,’/l} = (—2" + QZ)E - 37?!55
0 0 0
[zy%,ul] =y + (=2 + yz)% (20)
0 a
{35?15;7’/1] = (-2’ +92)£-
Continuing in this way for all elements of Y3, the linear map
for Lo can be represented by the matrix

A -1 0
My=\|1 A O @21
0 0 A
where T denotes a 6 x 6 identity matrix, and
0 -1 0 0 0 O
2 0 -2 0 0 0
0 1 0 0 0 O
A= o 0 0 0 -1 0 (22)
0 0 0 1 0 0
o 0 0 0 0 O

where each partition in M> is indexed according to the set
of monomials {z?,zy,y?,z2,yz,2%}. The basis vectors By
for the second-order normal form are determined from the
column space of M». The rank of My is 14, and therefore, the
nullspace G is given by a linear combination of four vectors
that can be represented in partial operator notation as

(sl ) ot 1555)

+ b1(7)<(x2 4 y2)&> + bz(f)(f%) 23)

where the coefficients a; and b; depend continuously on the
parameter 7.

Step 2: Determine the Form of the Generator Y.: The gen-
erator function Y*~1 in (13) is assumed to be a linear
combination of homogeneous polynomials in {z,y,z}. The
invariance constraint of (10) can be applied to determine the
specific form of Y. If we let

0
Y) =(Aiz 4+ Aoy + A?ﬂ)%

0
+ (Biz + Bay + Bsz)a—y

g
+ (Ciz + Coy + 032)5; 24)

then applying the constraint equation using v in (16) yields

Ay =By (25)
Ay =~ B
A3 =B3=C;=C=0

and the value of Cj is unconstrained. Consequently, Y1 must

assume the form
0 ad
26
3y>+v( o ) 26)

0 0
= a(évgg + ya—y> +ﬁ(y£

where we have renamed A; = a, As = 3, and C3 = 7.
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Step 3: Solve for the Normal-Form Coefficients: Since the
projection mapping is 3 : Hy — G, it follows that 72(b) = 0
for any b € B,. Therefore, the right-hand side of

d
EQZ(T) = 27
reduces to

—m2([Y1, 92(7)],)
_7|'2([lea.92(7—)]2) = '7(11(7') (zz% — yz%>
+ yaz(T) (—yz% + zz(%)

# o= () (4207 ) + el (72 )29

Matching coefficients from (27) using the projection (28)
yields the linear system of ordinary differential equations

a; = yay (29)
a2 = Y0y
by = (2a — )b
by = vby
with solutions
a1(7) = a1(0)e” (30)
az(7) = az(0)e”
bi(1) = by (0)e22="7
ba(7) = ba(0)e™.

If a;(0) # O, then we can choose v = log|a;(0)| so that
at 7 = 1, we have a;(1) = a1(0)e”; thus, a:(1) =
Furthermore, if we choose a = 1(log|a:(0)| — log [b1(0)|),
then b;(1) = 1.

The second-order normal form is obtained by evaluating
g2(7) in (23) at 7 = 1. Combining linear terms from (14)
with go(1) gives

z 0 —wy O x 81T — Qoyz
y| = | wp 0 0 yl|+ ar? + S1Yy2
P 0 0 0]z so(z? + y?) + by2?

(€)Y}

as the second-order normal form, where s; = +1 and s, =
+1.

Once the second-order terms have been converted to normal
form, the same methods can be applied to derive the third-order
terms. The third-order normal form on the center manifold is
given by

z 0 —wy O T $1T2 — agyz
gl=|wo O Of|y|+ asTz + $1y2 +
z 0 0 0 z 32(z2+y2)+b2z2

a3(z? + y?)z — ag(2? + y?)y
as(a? + y*)z + az(z? + y?)y
b423

(32)

This normal form has a particularly simple form when ex-
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Fig. 4. One-dimensional bifurcation function in which the zeros indicate

the amplitude of stable limit cycles. The parameter values are o = 6.6,
3 = 14.0, and ¢ = 0, 0.05. 0.1, 0.015.

pressed in cylindrical polar coordinates

p= slpz+a3p3+0(|p,9,z’4) (33a)
é=w0+a2z+a4p2+0(1p,a,z|“) (33b)
2= 50p? + boz? 4 byz® + 0(\p,a,z|4) (33¢)

evaluated up to order three. When applied to the analysis
of limit cycle behavior in Chua’s circuit, the value of p
corresponds to the radius of the limit cycle on the uv surface
of the center manifold, 6 is the phase angle between the « and
v coordinates, and z corresponds to the bifurcation parameter
o in the augmented system in (6).

III. BIFURCATION FUNCTION

One purpose for computing the normal form equation for
Chua’s circuit is to derive a reduced order bifurcation function
which characterizes the amplitude of the structurally stable
limit cycle oscillations [13], [16], [19]. Our goal is to under-
stand the local behavior of Chua’s circuit on the 2-D center
manifold. The Hopf bifurcation curve

B=za(3+a)

specifies the values of the parameters « and 3 of (1) at which
periodic oscillations emerge from a stable fixed point [2]. The
1-D equation in p in (33a) describes the amplitude of the limit
cycle oscillations in the neighborhood of the Hopf bifurcation
curve. For small values of ¢ and p, the bifurcation function

(35)

(34)

p=0op+azp®
shows that the amplitude of limit cycle oscillations varies with
o and has the stable amplitude py =
o increases through zero (e.g., by increasing values of « with
B fixed), a Hopf bifurcation from the fixed point to a limit
cycle occurs [13].

The shape of the bifurcation function in (35) is shown in
Fig. 4 for the case & = 6.6, 8 = 14.0, and ¢ is small. Since the
value of p is interpreted as the amplitude of the oscillations,
we shall consider only zeros in the right half plane of Fig. 4.
In this case, there are two zeros for each bifurcation curve.
The zero at the origin with p = 0 is unstable, and hence, any
trajectory starting near the origin will expand outward. The
zero at po # 0 is stable and determines the amplitude of the
stable limit cycle on the center manifold.

In the case where o is not small, it is necessary to rederive
the bifurcation function from the normal form. Closed-form

-
oo+ As the parameter
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expressions for the normal form-coefficients in terms of the dy-
namics on the center manifold enable the direct computation of
the bifurcation function. The computation of the normal form
was based on successive transformations that simplify terms of
order k without modifying lower order terms. However, terms
of order higher than k are modified by each transformation. In
order to calculate the coefficients for each term of the normal
form in terms of the original vector field, it is necessary to
keep track of all modifications to the higher order terms for
each successive transformation.

The general form of the dynamics projected onto the center
manifold is given by

U 0 wog O)ju ou felu,v)
|l =lwe 0O Of]w]|+]|ov|+|gelu,v)] (36)
o 0 0 0]|e 0 he(u,v)

where o is considered as a constant. The procedure for
computing the values of the normal form coefficients in terms
of the vector field in (36) is detailed in [13]. The resultant
coefficients a; in (32) are given by (37), which is shown at the
botom of this page, where the expansion has been evaluated
up to third order. The expressions in (37) provide a closed-
form solution for the coefficients for the Ushiki normal form.
The value of the coefficient a3 in the bifurcation function (35)
can be obtained directly from (37).

In Fig. 4, the value of ¢ was nearly zero, and the slope
of the bifurcation function at the zero of the function was
nearly parallel to the o axis. Thus, the rate of convergence onto
the limit cycle is slow, and the amplitude of the limit cycle
oscillations will be strongly influenced by noise, variation
of initial conditions, and interactions with spatially coupled
systems. As the value of « increases toward a« = 7.4 in
Fig. 5(a) (and hence o increases), the zero crossing of the
bifurcation function and the slope increase as shown in Fig.
5(b). Hence, the parameter o predicts the occurrence of a Hopf
bifurcation, and the slope of the bifurcation function through
the zero crossing provides a useful measure of limit cycle
stability.
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Fig. 5. Partial bifurcation diagram of Chua’s circuit. (a) Hopf bifurcation
curve in the a3-space. (b) Bifurcation functions along 3 = 14.0 for point
a, (a,0) = (6.6,0.0); point b, (6.8,0.002); point ¢, (7.0,0.037); point d,
(7.2,0.054); point e, (7.4,0.070).

IV. APPLICATION TO GESTURE RECOGNITION

In this section, preliminary results for an array of Chua’s
circuits for hand gesture recognition are described. Hand
gestures in American sign language (ASL) are characterized in
terms of i) the region of articulation in physical space, ii) the
trajectory of the hand motion, and iii) the hand configuration as
a function of position along the motion trajectory [20]. Many
gestures in ASL employ a fixed hand configuration along the
hand motion trajectory, and therefore, the focus of this paper
concerns only the identification of the place of articulation
and the recognition of the motion trajectory. The recognition
of hand shape is to be performed by a separate module. A
restricted set of trajectories consisting of circular motions in
various regions and orientations in the physical space are
examined. This initial set of trajectories is chosen to allow
the direct mapping between the space coordinates of the input
trajectory and the zyz variables of Chua’s circuit equations.

1
a2 = — -2’(f011 - 9101)

1
(go3o + f120 + g210 + fa00)+

as :1_()

1
——(fo209020 + fozo0f110 — go209110 + S110200 — 91109200 — f2009200)

16wq

1
g :E(—foso + g120 — f210 + 9300)+
1
480.10

(54820 — 29520 + 51109020 — 2120 + foz09110 — 29310~

5 fo20 f200 + 5 f2009110 — 590209200 + f1109200 — 59300 — 2f300)

1
=—{hao0 + ho20)

b24

b4 = §h0(]2

(37
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Synchrony of the x component for an 8 x 8 array of Chua’s circuits
driven by a nonperiodic function.

Fig. 6.

The dynamics of an array of Chua’s circuits are made as simple
as possible in order to illustrate the global entrainment of
the array and the subsequent formation of spatial patterns for
recognition. Reshaping the trajectories on the center manifold
surface using the normal form theory is not included in this
illustration.

The thorough development of nonlinear oscillators for tra-
jectory recognition depends on the elaboration of the transfor-
mational theory on the center manifold. The analysis of the
previous sections provides a description for the behavior of
limit cycle oscillations of an autonomous Chua’s circuit near
the center manifold surface. Since chaotic trajectories emerge
from the limit cycle trajectories as the bifurcation parameter
is increased, this analysis applies to a wide range of nonlinear
oscillations on the center manifold.

The initial design of the recognition system consists of an
array of Chua’s circuits in which each system in the array
is rotated along the horizontal and vertical directions so that
the center manifold is approximately aligned with one of the
trajectories from the restricted set of gestures. The driven form
of Chua’s circuit is

&= aly — f(z)]
)=z —y+z+g(t)
2= -Py

(3%)

where the function g(t) provides the input trajectory to the
circuit. The driving function is g(t) = ~(h;(t) — ), where
« is the coupling coefficient, and h(t) corresponds to the z-
projection of the 3-D hand motion trajectory to be recognized.
Each element in the array contains a rotated version of (38) in
order to illustrate the properties of synchronization and pattern
formation.

The interpretation of the state of the nonlinear oscillator
may be as difficult to achieve as the original recognition task.
This problem is greatly simplified by the entrainment of the
nonlinear oscillator to the input trajectory. The perturbation
to the dynamics in (38) is minimized when z = h;(t), thus
leading to the entrainment of the z component to the input.
The global entrainment of the array is illustrated in Fig. 6 with
an 8 x 8 array of Chua’s circuits with rotated center manifolds.
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Fig. 7. Spatial patterns created in an array of Chua’s circuits driven by two
different trajectories. Brightness indicates distance from the center manifold.
(a) Input is close to the manifolds of the diagonal elements, and (b) input is
close to the manifolds of the upper right elements.

The trajectories on the center manifold provide a rep-
resentation for the class of trajectories to be recognized.
The entrainment of the x component provides the temporal
alignment with the input trajectory. The distance between the
center manifold surface and the y and z components of the
input provide a measure for the quality of the match between
the class of trajectories on the manifold surface and the 3-
D input trajectory. Chua’s circuit with a and 3 chosen to
produce chaotic oscillations ensures rapid convergence onto
the center manifold surface, and therefore, the Elfclidean dis-
tance ((hy — @ij)? + (hy — yij)? + (h2 — 2;5)%) ? provides a
simple measure for the quality of match between trajectories.
Fig. 7 shows two spatial patterns obtained by evaluating this
distance measure for two input trajectories to the array. Note
that the inclusion of the x component in the distance measure
means that the distance is small when there is entrainment and
the input trajectory is near the center manifold surface.

The initial design of the array is based upon the assumption
of closed, circular orbits in a plane. The synchronization
of all circuits in the array and the formation of spatial
patterns were shown for this simple case. The recognition
of more complex trajectories on a non-planar surface can be
accomplished by modifying the center manifold surface of
the dynamical systems. According to the nonlinear transfor-
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mation theory developed in the previous sections, the shape
of the center manifold surface can be modified using (7).
The perturbation of the original dynamics by the new center
manifold is obtained from (8) followed by the inverse Jordan
transformation. Furthermore, the normal form of the modified
dynamics is computed directly from the center manifold using
the expressions for the coefficients in (37).

V. CONCLUSION

A paradigm for the study of nonlinear systems has recently
emerged with the introduction of Chua’s circuit and its as-
sociated canonical circuit family. The relative simplicity of
Chua’s circuit provides a convenient model of the dynamics
and bifurcation phenomena for the design of more complex
systems. A critical step in the design process is the repre-
sentation of the dynamics on the center manifold. In this
paper, the normal form method of Ushiki has been used to
determine a bifurcation function. Closed-form solutions were
derived for the normal form coefficients for Chua’s circuit
with a cubic nonlinearity. A simple application of an array
of Chua’s circuits used as nonlinear oscillators for trajectory
recognition was illustrated.
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