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Abstract—Empowering resource-limited robots to execute com-
putationally intensive tasks such as locomotion and manipulation
is challenging. This project provides a comprehensive design
space exploration to determine optimal hardware computation
architectures suitable for model-based control algorithms. We
profile and optimize representative architectural designs across
general-purpose scalar, vector processors, and specialized ac-
celerators. Specifically, we compare scalar CPUs, vector ma-
chines, and domain-specialized accelerators using kernel-level
benchmarks and end-to-end representative robotic workloads.
Our exploration provides a quantitative performance, area, and
utilization comparison and analyzes the trade-offs between these
representative distinct architectural designs. We demonstrate that
architectural modifications, software, and system optimization
can alleviate bottlenecks and enhance utilization. Finally, we
propose a code generation flow to simplify the engineering work
for mapping robotic workloads to specialized architectures.

I. INTRODUCTION

Robots are increasingly being deployed across diverse fields
such as package delivery, high-precision surgical assistance,
and autonomous industrial robots for warehouse assistance.
Robots run a broad spectrum of algorithms and workloads to
function effectively, including reasoning, sensing, perception,
localization, forward and inverse dynamics, mapping, motion
planning, and control. As robots evolve towards more com-
plex rigid dynamics with multi-joint systems, this introduces
additional challenges for control algorithms.

Model predictive control (MPC) is a widely used approach
for controlling highly dynamic robotic systems subject to
complex constraints. However, its computation demand grows
cubically with the robot’s state space and linearly with the
prediction horizon. This challenge becomes insurmountable on
embedded SoCs as robots evolve into highly dynamic multi-
joint rigid body systems. Additionally, control algorithms
must run at a frequency of 100-400Hz to meet real-time
deadlines in safety-critical applications. Ensuring low-latency
computation is crucial in safety-critical applications such as
obstacle avoidance and navigation, where every millisecond
of processing time can be critical.

Traditional microcontrollers and embedded SoCs either lack
the computational capacity to meet such latency require-
ments or consume excessive energy thus becoming imprac-
tical for battery-powered edge devices. As robots become
more complex and miniaturized, onboard resources, such as
compute power, energy, memory storage, and bandwidth, be-
come increasingly constrained. Furthermore, the combination
of computation-demanding algorithms, real-time requirements,
and resource constraints makes it increasingly impractical to

rely on a single hardware architecture to meet all demands on
an embedded SoC.

Recognizing the heterogeneity of modern SoCs, this report
explores hardware architectures suitable for modern robotic
systems by profiling MPC algorithms on embedded platforms
as an example. Specifically, we conduct a comprehensive
design space exploration across scalar, vector, and matrix ar-
chitectures as depicted in Figure 1. Our exploration provides a
quantitative performance, area, and utilization comparison and
analyzes the trade-offs between these architectural designs.
Finally, we propose a code generation flow to simplify the
engineering work for mapping robotic workloads to special-
ized architectures.

II. OVERVIEW OF ARCHITECTURES

CPUs are the most commonly used general-purpose com-
puting platforms. Since CPUs are designed to handle a broad
range of kernels, cheap CPUs, especially microcontrollers,
were traditionally used for simple rule-based robotic kernels
such as proportional-integral-derivative (PID) control solvers.
However, microcontrollers fail to meet the computational
demand for real-time robotic tasks with scaled-up models and
DNN-based algorithms. This is mainly due to microcontrollers
being typically slow with a compute frequency of 200 MHz.
One solution to maximize a CPU’s available compute is by
exploiting the out-of-order and superscalar architecture to
drive instruction-level parallelism. However, the performance
margin comes with the cost of area overhead and power con-
sumption. An out-of-order and superscalar CPU can achieve
up to 100 GFLOP/Sec. However, its power efficiency is less
than 1 GOP/J, which is usually not compatible with power-
constrained embedded devices [24].

Vector extensions allow CPUs with lightweight front-ends
to achieve similar performance as out-of-order and super-
scalar CPUs, while dramatically simplifying implementation
by eliminating excess control logic. Vector machines ex-
ploit data parallelism by processing multiple data elements
with a single instruction without adding too much power
and area overhead. Various vector architectures range from
traditional long-vector machines, as presented in Cray-style
vector machines [19] to Packed SIMD (P-SIMD) machines
that utilize VLIW instruction encodings, [12], to contemporary
novel short-vector machines [26]. These architectures adeptly
support a broad array of operations, such as scalar multi-
plication, general vector multiplication (GEMV), and matrix-
matrix multiplication (GEMM). While vector cores are highly
flexible and can handle a wide range of computations, they
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may not be as efficient for GEMM as dedicated systolic arrays
or other matrix-specific accelerators, especially in handling
large, batched operations. This is because vector machines
scale inadequately with a large datapath compared to a systolic
array-style processor. As datapath length (DLEN) scales up to
feed in data sufficiently to the increased number of lanes, the
bandwidth of the register file must scale accordingly.

GPUs are designed to drive data-level parallelism (DLP) and
thread-level parallelism (TLP) with up to over 100 thousand
cores running simultaneously, enabling massive parallelism.
Only a few robotic workloads [5], [15] can be benefited from
such massive parallelism. However, a typical GPU can reach
up to 10 TOPS/Sec of performance. Its high throughput makes
it suitable for tasks that involve heavy matrix computations,
graphics rendering, and other non-real-time robotic workloads.
GPUs mainly exhibit TLP by running thousands of threads
simultaneously to handle extensive graphical calculations and
data processing tasks efficiently. However, a conventional
GPU’s die area is typically around 600 mm2 to over 800
mm2 [7], which consumes too much area to be placed on
micro- or nano-robotics where the system has limited space
on a chip and faces weight constraints. In terms of energy
consumption, GPUs consume 100W-350W of power [25],
which is far beyond the power budget of most resource-limited
robotic systems.

In addition to the general-purpose processors, application-
specific integrated circuits (ASICs), and field-programmable
gate arrays (FPGAs) have recently been proposed as feasible
platforms for power-constraint robotic applications since they
offer higher energy efficiency than CPUs and GPUs. Both
ASICs and FPGAs consume relatively less power and are often
integrated into small systems with limited memory. Exempli-
fied by their reconfigurability and programmability, FPGAs
adapt well to the involving robotic algorithms compared to
ASICs. Partial Reconfiguration (PR) extends this flexibility,
allowing dynamic reconfiguration of a portion of the FPGA
at runtime [22]. However, the highly specialized programming
model, challenges in mapping irregular algorithms with control
flow, and high resource overhead from configuration/routing
logic make maximizing the utilization of all processing ele-
ments (PEs) challenging [23].

With the integration of domain-specific accelerators, ASICs,
and FPGAs can parallelize computations while leveraging the
specific characteristics of the kernels to eliminate excess logic
and simplify implementation [22] and offload specific com-
putational tasks to the accelerators. Research [13], [16], [23]
has been devoted to developing hardware-aware algorithms for
FPGAs and has been proposed to achieve software-equivalent
performance, making ASICs and FPGAs capable of meeting
real-time requirements [14], [20], [21].

Particularly, spatial array style domain-specific accelerators
have been attributed to their energy efficiency and compute
throughput in compute-intensive workloads such as neural
networks. A typical spatial array accelerator architecture can
achieve an efficiency of approximately 34.4 GOP/J while
consuming 278 mW at a frame rate of 35 FPS for the

AlexNet model [4]. The benefit of re-purposing deep neural
network (DNN) accelerators for robot computing is based on
the observation that neural network accelerators are optimized
for matrix linear algebra [9], [11] while major robotic al-
gorithms also mainly consist of DNN workloads and small-
sized GEMM and GEMV [2], [8]. Most robotics chips already
contain an ASIC neural net inference accelerator to speed
up DNN-based workloads like perception, vision, and online
learning. Suppose it can be shown that the same accelerator
is also capable of speeding up robot dynamics computations.
In that case, the overall SoC architecture can benefit from
significant savings in the chip area, make room for other
specialized units, or instead enable a physical design that is
more cost-effective for ASIC implementation.

Besides DNN accelerators, research efforts [5], [13]–[17],
[20], [21] have been dedicated to design domain-specific
robotic accelerators exclusively for robotic algorithms, focus-
ing on a particular kernel defined for optimization problems for
specific types of robots. Although domain-specific accelerators
can offer improved efficiency over general-purpose processors
on specific robotics workloads, the dramatic amount of engi-
neering cost due to its specific programmable interface with
its dedicated domain-specific language (DSL); Besides, due to
the limitation of its fixed functionality, certain domain-specific
accelerators usually fail short on other types of operations
as robotic algorithm evolving. Besides, the life span of such
accelerators can be relatively short compared to the general-
purpose approach since certain accelerators can be obsoleted
fairly fast when they fail to keep up with the fast-evolving
algorithms.

From a high-level perspective, we observe that each archi-
tecture offers distinct advantages in terms of computational
efficiency by leveraging various forms of parallelism: data-
level, instruction-level, and thread-level parallelism to achieve
the compute efficiency required by specific types of robotic
tasks with different area and power costs. Moving forward,
our focus will be on three principal architectural categories:
general-purpose CPUs, vector machines, and domain-specific
accelerators. These architectures are strategically selected to
meet the diverse computational needs of robotic systems
within stringent area and power constraints.

III. METHODOLOGY

This initial analysis in Section II allows us to narrow
our focus to the following architecture categories: general-
purpose CPUs, vector machines, and domain-specific accel-
erators. To understand the tradeoff of these architectures,
we profile representative architecture candidates from each
categories1: For general-purpose CPUs, we evaluate RISC-
V CPU cores, including simple in-order core Rocket [1],
superscalar in-order core Shuttle [18], superscalar out-of-order
BOOM core [3], and more performant out-of-order cores such
as MediumBOOM, LargeBOOM and MegaBOOM core with
different numbers of floating point unit (FPUs) [27]. For vector
machines, we assess Saturn, a vector extension on RISC-V
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Fig. 1. Categories of Target Hardware Architectures to be Profiled and
Evaluated: CPU, tightly integrated accelerators, and decoupled co-processors

CPU with short-vector microarchitecture [26]. For domain-
specific accelerators, we profile a state-of-the-art systolic array
Gemmini [9].

One distinct attribute of these architectures is their inte-
gration styles, ranging from standalone processing units (e.g.
CPUs) to tightly integrated systems (e.g. a CPU with vector
extensions) to loosely coupled systems (e.g. a CPU with
Gemmini). This segment of the study highlights the significant
performance enhancements through software optimization and
architectural changes. Saturn is a compact design of a vector
machine tightly integrated into the CPU. On the other hand,
Gemmini integrates with a RISC-V CPU using a decoupled
Rocket custom coprocessor (RoCC) interface, which provides
the flexibility of allowing CPU and processing units to work
concurrently. The reorder buffer in Gemmini decouples the
instruction flow latency from the actual execution, allowing
for latency hiding.

Furthermore, we assess the impact of the architectural
spatial structure among candidate architectures, which is the
physical layout of processing units, from scalar and 1D
vector cores to complex 2D systolic arrays. we analyze the
capabilities of systolic arrays in handling multi-dimensional
data structures, which are prevalent in advanced computational
tasks such as matrix multiplication. The efficiency of these
arrays in leveraging spatial characteristics is weighed against
their potential limitations in processing higher-dimensional
data.

IV. WORKLOAD CHARACTERIZATION

MPC algorithms are computationally intensive. MPC incor-
porates dense linear algebra kernels like GEMV and GEMM,
and domain-specific operations such as Cholesky decomposi-
tion and Riccati recursion, which further increase the compu-
tational load. Specifically, we profile TinyMPC, a state-of-the-
art embedded MPC algorithm as an example, and measure the
impact of hardware architectures on kernel performance and
end-to-end workloads.

A. Workload Structure

One state-of-the-art approach to solving MPC is the al-
ternating direction method of multipliers (ADMM). ADMM
alternates between updating the primal variables, slack vari-
ables, and dual variables, ensuring convergence to an optimal
solution by gradually reducing constraint violations; with each
subroutine denoted as primal update, dual update, slack up-
date. TinyMPC redefines the most computationally expensive
step, the primal update, as a linear quadratic regulator (LQR)

Fig. 2. Kernel Breakdown of TinyMPC

problem. LQR equations are solved using Riccati recursion,
where the feedback gain matrix K and feedforward term d are
computed for each time step. Over sufficiently long horizons,
the Riccati recursion converges to an infinite-horizon solution,
represented by a single gain matrix K∞ and cost-to-go matrix
P∞. TinyMPC optimizes memory use by caching these two
matrices, avoiding the need to store the entire horizon of
intermediate K and P matrices. During each ADMM iteration,
only the linear terms of the Riccati equation need updating,
further accelerating the computation. Pre-computed matrix
inverses and coefficients ensure the algorithm’s most intensive
operations are limited to matrix-vector products, enabling
fast and memory-efficient execution suitable for constrained
environments.

The functions of TinyMPC can be broadly classified into
three categories: Iterative operations that have data dependen-
cies, strip-mining operations on vectors, and global maximum
reductions. These are shown in Algorithms 1, 2, and 3,
respectively; with more detailed kernel breakdown in Figure
2.

Algorithm 1 Iterative Operations in TinyMPC
1: function FORWARD PASS 1(i)
2: u[i]← −Kinf · x[i]− d[i]
3: end function
4: function FORWARD PASS 2(i)
5: x[i+ 1]← Adyn · x[i] +Bdyn · u[i]
6: end function
7: function BACKWARD PASS 1(i)
8: d[i]← Quu inv · (Bdyn⊤ · p[i+ 1] + r[i])
9: end function

10: function BACKWARD PASS 2(i)
11: p[i]← q[i] +AmBKt · p[i+ 1]−Kinf⊤ · r[i]
12: end function
13: function UPDATE LINEAR COST 4
14: p[N − 1] ← −(Xref [N − 1]⊤ · Pinf · (vnew[N −

1]− g[N − 1]))
15: end function
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Algorithm 2 Stripmining Operations in TinyMPC
1: function UPDATE SLACK 1
2: znew ← u+ y
3: znew ← min(u max,max(u min, znew))
4: end function
5: function UPDATE SLACK 2
6: vnew ← x+ g
7: vnew ← min(x max,max(x min, vnew))
8: end function
9: function UPDATE DUAL 1

10: y ← y + u− znew
11: g ← g + x− vnew
12: end function
13: function UPDATE LINEAR COST 1
14: r ← −rho · (znew − y)
15: end function
16: function UPDATE LINEAR COST 2
17: q ← −(Xref ·Q)
18: end function
19: function UPDATE LINEAR COST 3
20: q ← q − rho · (vnew − g)
21: end function

Algorithm 3 Global Reduction in TinyMPC
1: function PRIMAL RESIDUAL STATE
2: primal residual state← max(abs(x− vnew))
3: end function
4: function DUAL RESIDUAL STATE
5: dual residual state← rho ·max(abs(v − vnew))
6: end function
7: function PRIMAL RESIDUAL INPUT
8: primal residual input← max(abs(u− znew))
9: end function

10: function DUAL RESIDUAL INPUT
11: dual residual input← rho ·max(abs(z − znew))
12: end function

B. Programming Interface and Libraries

To create a unified platform for comparing the performance
of differing architectures for Robotic and DSP applications,
we create a C library of commonly used operators, matlib1.
matlib provides a lightweight interface to various linear
algebra operations similar to Eigen [10], a C++ header-only
library. matlib was used to write reference implementations
for each backend; however, to achieve full performance, hand-
tuned implementations required optimizations across the ab-
stractions provided by these function definitions.

V. HARDWARE SOFTWARE CO-OPTIMIZATION

Developing highly optimized software mapping for each
hardware target is necessary. These optimizations ensure a
clear comparison between different hardware architectures by

1https://github.com/ucb-bar/matlib

isolating architectural characteristics from sub-optimal soft-
ware implementations. This approach attempts to overcome
the impact of other variables such as inefficient software
mappings or overheads introduced by inefficiently written
code, that might obscure the hardware’s true capabilities. This
approach ensures that any observed performance differences
are directly attributable to the hardware’s architectural design
rather than extrinsic software factors.

A. Optimizations on Vector Core Saturn

To initially accelerate TinyMPC, we utilize a library-based
approach. For every matlib function that is used within the
solver, we write a vectorized implementation using RISC-V
vector extension (RVV) intrinsic support from gcc. However,
as shown in Figure 3, although the vectorized matlib code
has meaningful speedup over scalar matlib code running
on Rocket, highly optimized scalar code using Eigen still
outperforms the Saturn implementation, necessitating further
optimizations.

1) Software Loop Unrolling: One benefit of the RVV ISA
is its ability to perform register grouping using the LMUL field.
This performs register grouping and unrolls contiguous vector
operations in hardware using a vector sequencer, theoretically
eliminating the need for software loop unrolling. As depicted
in Figure 4, utilizing LMUL improved the performance of strip-
mining operations in matlib. However, increasing LMUL
harmed performance for the iterative components of TinyMPC,
backward_pass and forward_pass. The major com-
ponent was that these operations must to compute GEMV
and vector addition operations serially and could not be
mapped to larger vector registers due to dependencies. Fur-
thermore, optimized GEMV kernels on Saturn require using
the vfmacc_vf instruction, multiplying a scalar element of a
vector against a column of a matrix. However, due to TinyMPC
using vector dimensions of 4 and 12 for the iterative kernels,
these could only be partially mapped to the 512-bit vector
registers, further hindering the use of LMUL. Aggressive soft-
ware loop unrolling allowed variation in the scalar elements
across instructions, compensating for the absence of hardware
unrolling.

Alternatively, we consider using vector summation using
reduction operators (vfred(o|u)sum) to increase the uti-
lization of vector lanes for wide matrices. However, Saturn
currently implements vector reduction serially. Because of this,
despite using fewer vector lanes, vfmacc_vf is better suited
than vector reduction.

2) Operator Fusion: Another downside of using matlib
based code for optimizing TinyMPC was the fact that the func-
tion boundaries prevented fusing operators across registers.
Every time a matlib function is called, data are explicitly
written back to memory using RVV store intrinsics and must
be subsequently loaded back to registers in future invocations.
This increases the instructions the frontend must serve to the
vector units, and adds additional memory latency. Instead, we
wrote optimized implementations of the TinyMPC functions,
fusing matlib operators by keeping temporary values within
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Fig. 3. Matlib-based vs hand-optimized vectorized TinyMPC

Fig. 4. Accelerating TinyMPC using Saturn with varying sizes of LMUL

Fig. 5. Library vs Fused-Operator Speedup on Rocket-driven 512V256D
Saturn

the vector registers until they need to be written back to the
TinyMPC workspace. The impact of these optimizations, along
with software unrolling, is depicted in Figure 5.

B. Optimizations on Systolic Array Gemmini

1) Build a Systolic Array that supports GEMV: We ar-
chitect Gemmini’s systolic array to support both GEMM
and GEMV operations and effectively address the previously
limited utilization of processing elements. This expansion of
the systolic array change ensures a fair comparison between
Saturn and Gemmini. The rationale is that Saturn, as a general
proposed-vector machine, supports GEMV and GEMM well.
However, Gemmini is facing the limitation of only 1/DIM
utilization in GEMV operations since only one column of
the mesh PEs will be utilized. For example, the utilization
is approximately 25% for a mesh with a dimension of 4x4.
The utilization of the systolic array decreases when the mesh
size increases.

The primary difficulty with the matrix-vector operation
AB + D is the lack of reuse with the A matrix. No longer
can we propagate A rightwards, as each processing element
(PE) requires a new element every cycle. Given the desire
for full utilization of the mesh, we first added additional
scratchpad banks and modified the execute controller to fetch
DIM × DIM elements of A in parallel. By providing mesh
DIM2 elements of A at every compute cycle, one for each
of the PE in the systolic array. Next, to improve the reuse of
B, we broadcast a singular element of B across all columns.
This allows the columns to be independent of one another
during GEMV operations. The changes allow all the PEs to
be utilized to compute DIM2 of A ×DIM elements of B for
GEMV operation in the systolic array in Figure 6.

By re-architecting Gemmini, the modified GEMV Gemmini
achieves more than a 4× speedup in GEMV by achieving
full utilization on such operation while maintaining its per-
formance in GEMM. Another benefit is removing the delay
across columns, as each input can be directly wired to a PE
with a multiplexer. The trade-off is that the additional features
come at a 2% area cost in a 4×4 mesh compared to Gemmini’s
original design. As depicted in Table II, an additional area is
attributed to the extra scratchpad banks since our feature needs
at least DIM + 1 banks to ensure all the necessary data for
the mesh being loaded in one cycle. DIM for the elements of
input A and 1 for the biases in weight stationary mode and
weights (vector) B in output stationary mode.

The heatmap in Figure 8 illustrates the speedup achieved
by our design compared to the original Gemmini design over
a range of matrix and vector sizes. The x-axis represents the
matrix width and the vector length (K), while the y-axis shows
the matrix height (I). Each cell shows the speedup achieved
for the given matrix and vector dimensions. The result demon-
strates that the new GEMV/GEMM systolic array achieves
a significant performance improvement over the traditional
GEMM systolic array on various sizes of vector and matrix
sizes. On average, the new architecture delivers on average ˜a
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A [0, : ] A [1, : ] A [2, : ] A [3, : ]

A [4, : ] A [5, : ] A [6, : ] A [7, : ]

.....

B[0] B[1] B[3]B[2]

.....

.....

Fig. 6. Example DIM = 4 scratchpad setup with GEMV mesh. The rows
of A are strided across DIM banks to allow for DIM × DIM elements to be
accessed at once. The weight vector is stored consecutively in memory.
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..., a[4,0], a[1,0]

..., a[5,0], a[2,0]

..., a[6,0], a[3,0]

..., a[6,0], a[3,0]

Fig. 7. A 4× 4 example of the execute controller wiring the elements of A
into the mesh PEs. It also duplicates the weight and bias vectors, depending
on the dataflow, across the columns of the mesh.

6× speedup on GEMV operations while maintaining similar
performance for GEMM.

2) Perform Software Optimization on Gemmini:
a) Static Mapping of Kernels: Static mapping of kernels

involves pre-calculating and optimizing the allocation of data
and tasks to various processing elements within the hardware.
In scenarios involving fixed-size operations like those com-
monly found in MPC, dimensions, tiling, and indexing can be
determined without dynamic memory allocation. This allows
for the entire computational workflow to be streamlined, as
all necessary instructions such as moving data in (i.e. mvin)
and out (i.e. mvout) of scratchpad and computation (i.e.

Fig. 8. Speedup on randomly generated GEMV operations achieved by
GEMV fine-grained weight stationary workload on Gemmini driven by Rocket

execute) can be prepared and optimized beforehand. This
approach not only simplifies the coding and execution process
but also significantly reduces the computational overhead as-
sociated with dynamically calculating these parameters during
runtime.

b) Enhanced Instruction Throughput: By statically map-
ping kernels and unrolling loops, unnecessary CPU operations,
which are typically used to calculate indexing and tiling on
the fly, are eliminated. This removal of redundant calculations
ensures that the accelerator is not left idle, thus avoiding
poor utilization and wasted computational resources. Such
optimizations enable a direct feed of optimized instructions
to the accelerator, enhancing the instruction throughput and
ensuring that the computational units are continuously active
and productive.

c) Reduction of Redundant Operations: Beyond improv-
ing throughput, this method also involves the removal of
redundant operations that do not contribute to the result of the
computation. This includes unnecessary configuration com-
mands, fencing operations that ensure data integrity but may
be excessive, and redundant data movement of data already
present in the system. By eliminating these operations, the
efficiency of the execution process is further enhanced. Each
instruction executed is necessary and directly contributes to the
computational goal, minimizing the cycle time and improving
the overall speed of computation.

d) Streamlined Execution and Reduced Latency: Static
mapping of kernels addresses the overhead introduced by
default software interfaces, which often include redundant
and unnecessary instructions. We streamlined the computation
process by leveraging statically known strides, tiling factors,
and matrix/vector sizes, eliminating superfluous operations
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Fig. 9. Optimizing Gemmini software mapping with loop unrolling and static
mapping

and significantly enhancing the execution efficiency between
linear algebra operations. This method ensures that the kernels
are optimally aligned with the hardware capabilities, reducing
latency and improving throughput.

3) Use of Gemmini’s Fine-Grained ISA: Gemmini’s coarse-
grained instruction set is necessary for most machine-learning
applications to achieve high mesh utilization. However, coarse-
grained instructions require multiple RoCC instructions for
configuration, spending 5-7 instructions before beginning ex-
ecution. Additionally, constructing these RoCC instructions
can take multiple cycles due to the bit-shifting that needs
to be performed by the scalar CPU to construct the RoCC
arguments. For the matrix sizes found in TinyMPC, coarse-
grained instructions only map to 2-6 fine-grained instructions,
resulting in negligible benefit from hardware instruction se-
quencing. Furthermore, coarse-grained instructions require the
input operands to be stored in memory, preventing additional
optimizations from re-using data on Gemmini’s scratchpad.

However, using the fine-grained ISA requires improved in-
struction throughput from the CPU, driving the RoCC interface
to achieve high utilization of Gemmini. To address this, we
aggressively unroll code and perform indexing and address
calculation at compile-time using static mapping to minimize
the overhead of constructing RoCC instructions.

4) Scratchpad-Resident Linear Algebra Operations: In or-
der to support data-dependent operations on Gemmini, mod-
ifying the typical DNN kernel mapping for Gemmini was
necessary. Typically, inputs to an operation are loaded into
Gemmini’s scratchpad before they are used as inputs to tiled
operations, accumulating in Gemmini’s accumulator memory.
These results are then stored back in DRAM before being
reused in subsequent operations. However, when performing
operations that take several cycles on Gemmini, this overhead
severely limits performance. In addition to the latency induced
by data movement, explicit fence instructions must be inserted
between Gemmini store and load instructions, as Gemmini’s
ROB does not track data RAW hazards across memory oper-
ations. In our experimentation, this can introduce up to 600
cycles of stalling upon a fence instruction within the iterative
phase of TinyMPC.

To avoid this issue, we perform several optimizations to our

Fig. 10. Optimize on Gemmini’s Memory Interface to Achieve Scratchpad-
Resident

mapping. First, we load all matrices used by TinyMPC onto the
first bank of the scratchpad, in addition to several utility matri-
ces, such as identity and negative identity matrices. Secondly,
intermediate results computed by Gemmini are directly written
to the scratchpad so that they can be immediately reused in
subsequent operations. One downside of this approach is that
writing to the scratchpad instead of the main memory prevents
the use of Gemmini’s output scaling pipeline, which can help
perform fused scaling/GEMM operations. To compensate for
this, we allocate additional utility matrices onto the scratchpad,
which are commonly used scalar multiples of the identity
matrix.

Although it is theoretically possible to perform most of
TinyMPC’s kernels fully resident on the scratchpad, we only
perform this optimization for the iterative passes. The reason
for this is when performing GEMV operations using Gem-
mini’s original hardware, vectors must be stored in a single
column of the destination scratchpad, resulting in inefficient
loads when performing element-wide operations, as only one
element is loaded per cycle. However, future architectural
enhancements to Gemmini, such as hardware GEMV support,
would allow vectors to be stored and packed across scratchpad
rows, addressing this issue.

5) Output Stationary Dataflow and Elimination of Accu-
mulator Memory: Storing the outputs of Gemmini’s com-
pute operations in the scratchpad prevents unnecessary data
movement to memory. However, this also prevents the use of
hardware accumulators to perform tiled operations on the same
partial outputs. To address this, this work uses a Gemmini
configuration with an output-stationary dataflow. Unlike ma-
chine learning workloads, there is not enough significant reuse
of weights to benefit from a weight-stationary dataflow, and
accumulating within the mesh’s PEs eliminates the need for an
explicit accumulator memory. Furthermore, although Gemmini
does not support using coarse-grained instructions for the
output stationary dataflow, since coarse-grained instructions
are not used for TinyMPC, there is no drawback to using
the output stationary dataflow from a programming interface
perspective.

6) Activation Functions and Pooling: Although linear oper-
ations such as vector addition and subtraction, scalar multipli-
cation, and GEMV can be performed solely using Gemmini’s
mesh, other operations such as absolute value and min/max
cannot be performed. Absolute value is required to perform the
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strip-mining operations in TinyMPC on Gemmini. However, as
depicted in Equation 1, the absolute value can be implemented
using ReLU, an activation function natively supported by
Gemmini. This allows Gemmini to fully compute the strip-
mining operations and utilizes Gemmini’s ability to fuse
activation functions with tiled operations on the mesh.

abs(x) = ReLU(x) + ReLU(−x) (1)

Additionally, ReLU can also be used to clip a value to an
upper or lower bound, which is required for updating slack
variables in TinyMPC. However, these operations can be also
performed using ReLU using Equations 2 and 3.

cliplow(x,min) = ReLU(x−min) + min (2)

cliphigh(x,max) = −ReLU(−x+max) + max (3)

Finally, computing the residuals of TinyMPC requires cal-
culating a global maximum across vectors of approximately
100 elements each. While this could potentially implemented
using sequences of ReLU operations, computing a maximum
between two arbitrary vectors would require over 5 operations,
achieving comparable performance to simply using a scalar
CPU. However, to avoid computing the entire maximum on
the scalar core, Gemmini’s hardware support for max-pooling
and be utilized. By using a pool size of 2 when moving
out to shared memory, Gemmini can perform a reduction
across 4 scratchpad rows. This can potentially be increased
by increasing the hardware pooling dimensions. Although this
does not enable max reduction within a scratchpad row, this
still reduces the max reduction needed to be performed on the
CPU by a factor of 4.

Fig. 11. Mapping of the TinyMPC Solver Workspace to Gemmini Scratchpad

7) Develop Fine-Grained Synchronization Interface : This
optimization targeted the reduction of synchronization over-
heads in memory interfaces, which can significantly hamper
the computational efficiency in parallel processing environ-
ments. By streamlining the synchronization processes and
enhancing the communication protocols between CPU and
Gemmini, the fence instruction can be reduced to avoid stall
on the CPU side. This reduces the time wasted waiting for
memory accesses and synchronization, improving the overall
system responsiveness and throughput.

Fig. 12. challenge of Gemmini’s Synchronization Interface

By integrating both software and hardware optimizations,
we ensure the following evaluation reflects the strengths and
limitations of each architectural design. This comprehensive
approach also allows us to understand better how different
architectures can be optimized and utilized for the complex,
diverse demands of modern robotic and machine-learning
applications.

VI. EVALUATION

We conduct a detailed profiling and synthesis to explore the
trade-offs between area, performance, and utilization of each
backend. First, we carried out the comparison over standard
benchmarks between RISC-V cores, vector core Saturn, and
the systolic array, Gemmini, specifically GEMV and GEMM
operations. Second, we evaluated each backend in the context
of robotics applications with the target workloads. By syn-
thesizing different architectural configurations, we understand
the strengths and limitations of each approach under varying
computational loads and analyze the trade-off between perfor-
mance, area, and utilization across all designs.

A. Performance Evaluation

1) Kernel-level Evaluation: The heatmaps in Figure 13
and Figure 15 illustrate the performance patterns of the vec-
tor architecture and systolic array across various operations,
highlighting each backend’s strengths. These differences in
performance reflect that each backend has its unique strength
over the other with different operations.

Figure 13 demonstrates the speedup achieved by Saturn over
the original Gemmini design for GEMV operations across a
range of randomly generated matrix and vector sizes. Both
backends are powered by a simple in-order RISC-V core,
Rocket [1]. The x-axis represents the matrix width and vector
length (K), while the y-axis indicates the matrix height (I).
Each cell displays the relative speedup achieved for a given
matrix-vector size combination. On average, Saturn achieves a
speedup of approximately 2.78× for GEMV operations, as the
original Gemmini architecture can only utilize a single column
of its mesh for this workload.

After adding the GEMV support, Gemmini’s performance
on GEMV operations improved significantly by over 5× on
average, which allows Gemmini’s to outperform Saturn by
2.34× in various vector and matrix sizes. However, Saturn
must perform matrix-vector operations using vector-scalar
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Fig. 13. Speedup Achieved by Saturn over Gemmini on Randomly Generated
GEMV Operations

Fig. 14. Speedup Achieved by GEMV Gemmini over Saturn on Randomly
Generated GEMM Operations

operations, broadcasting one element of the vector to perform
parallel reductions. The GEMV kernel uses register grouping
with LMUL=8 to reduce instruction throughput requirements
from the front end. However, driven by a simple Rocket core,
for small matrix heights (I), this kernel cannot make full
use of the grouped registers. In this case, Gemmini, which
can perform sequenced operations using the K dimension,
performs comparably to Saturn.

On the other hand, Figure 15 shows the speedup of Gemmini
relative to Saturn for GEMM operations. For large matrix
dimensions, both architectures perform comparably, as they
can achieve high utilization of their PEs. However, for smaller
matrices, Gemmini benefits from having a more flexible in-

Fig. 15. Speedup Achieved by Saturn over Gemmini on Randomly Generated
GEMM Operations

struction sequencer through its FSM, which can automatically
generate a sequence of load, compute, and store instructions,
while Rocket must explicitly issue vector instructions to Saturn
without being able to take advantage of register grouping for
short vectors.

The result demonstrates the distinct strength of both types
of architecture. In general, the vector core performs better than
the original Gemmini for GEMV operations, and the systolic
array achieves a significant performance for GEMM since it
exploits the 2D spatial attribute of the GEMM operation.

2) End-to-end Workload Evaluation: To compare the per-
formance of hardware backends on real robotic workload, we
evaluated all the hardware designs’ performance in computing
TinyMPC. Figure 20 plots each hardware configuration using
its area, as well as the average frequency at which it can ex-
ecute the ADMM solver used in TinyMPC. Furthermore, this
chart highlights the Pareto-optimal frontier for this application.
Reflecting the efficiency gains of switching to specialized ar-
chitecture compared to general-purpose processors, all design
points from both Saturn and Gemmini lie above the frontier
set by the scalar cores, Rocket, LargeBoom, and MegaBoom.

a) Performance Evaluation of RISCV CPUs: Breaking
down the performance within each category, we profiled rep-
resentative architecture candidates from each category: RISC-
V CPU cores, RISC-V CPU with vector extensions Saturn,
and the systolic array Gemmini, where RISC-V CPU cores
include simple in-order core, superscalar in-order core, out-
of-order BOOM core, a more performant out-of-order Mega-
BOOM core with 2FPUs. When comparing the end-to-end
performance of control workloads, we use Rocket running
optimized scalar Eigen code as a baseline. However, when
evaluating the performance of individual kernels, we use the
matlib implementation of the kernel; although matlib is
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not as performant as Eigen, our matlib implementation has
the same interface as the accelerated implementation of each
kernel.

The different BOOM configurations showcase varying spec-
ifications designed for specific performance needs. The Small
BOOM has a fetch width of 4, a decode width of 1, and
three instruction queues (IQ) for memory (mem), integer (int),
and floating-point (fp) pipelines. The Medium BOOM also
features a fetch width of 4 but increases the decode width to
2, enhancing its IQ configurations with mem having 1 issue
and 2 dispatches, int with 2 issues and 2 dispatches, and fp
with 1 issue and 2 dispatches. The Large BOOM continues
with a fetch width of 4 and a decode width of 1, increasing
dispatch capacity with mem, int, and fp pipelines featuring
more dispatch capabilities. The Mega BOOM expands further
with a fetch width of 8 and a decode width of 4, having each
pipeline’s IQ equipped for higher issue and dispatch rates.

As the CPU configuration scales up, the performance over
the end-to-end workload grows, especially when the CPU
exploits out-of-order and superscalar, as seen in BOOM’s
performance improvements. CPUs also deliver better perfor-
mance when dedicated instruction queues for each pipeline
to drive instruction-level parallelism, which maximizes the
CPU’s compute availability. However, this increased perfor-
mance margin comes with the cost of area overhead and power
consumption. All the CPU configurations fail to perform
efficiently, as shown in the Pareto optimal Figure 20 analysis.

b) Performance Evaluation of Saturn: Saturn shows a
strong performance across a variety of operations but seems
particularly effective in tasks like primal and dual state up-
dates, residual calculations, and linear operations based on
Figure 16. This could suggest efficient utilization of vector
operations which can process multiple data points in a single
instruction, enhancing throughput and decreasing cycle time
for these specific tasks.

In operations where high data parallelism is exploitable,
Saturn tends to perform better, which is evident from the
consistent high speedup factors, particularly in the last chart,
where it achieves a very high speedup in several operations. In
these cases, Saturn can fully map operations to vector registers
without significant overhead from handling tail cases and can
make use of instruction sequencing and register grouping.

c) Performance Evaluation of Gemmini: Gemmini’s per-
formance peaks in specific operations like forward passes and
linear cost updates, as shown in Figure 18, suggesting that its
architecture is highly optimized for scenarios where matrix-
vector operations are dominant. The significant variability
in Gemmini’s performance across different operations may
indicate its specialized nature, excelling greatly in its niche
(matrix operations) but perhaps not as flexible or efficient
for other types of data processing tasks compared to general-
purpose vector processors like Saturn.

d) Comparison Setup: Furthermore, we conduct an ini-
tial comparison between Gemmini and Saturn to better under-
stand each architecture’s relative performance and their unique
strengths in certain types of operations. The configurations

Fig. 16. Performance of Saturn(V512D128) on End-to-End Workload
TinyMPC with Kernal Breakdown

Fig. 17. Performance of Saturn(V512D256) on End-to-End Workload
TinyMPC with Kernal Breakdown

are carefully chosen, such as Gemmini with 4×4 FP Mesh
and Saturn V512D512, both driven by Rocket. These config-
urations ensure the backends of each architecture have equal
amounts of PEs, thus allowing them to perform theoretically
the same FLOPs/cycle. Besides the same computational capac-
ity of the backend of each candidate, choosing the front end
to be Rocket for both also allows the instructional throughput
to be relatively similar among both candidates.

At a high level, Saturn shows more uniform and often
higher speedup across a broad range of operations, suggesting
better general-purpose usability with its vector extensions,
especially for varied computational tasks. On the other hand,
Gemmini excels in specific tasks tailored to its systolic array
architecture, achieving exceptional speedup in matrix-related
operations but showing less versatility across a broad spectrum
of computational tasks.

e) Performance Comparison Across all Architectures:
Due to the flexible nature of the RVV vector instruction set as
well as the Saturn generator, we were able to evaluate many
hardware configurations using the same software mapping. By
using RVV intrinsics and dynamically computing VLMAX, the
same binary can be executed on every hardware configuration
evaluated. Since the iterative functions within TinyMPC can
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Fig. 18. Performance of Gemmini(4x4 FP Mesh) on end-to-end workloads
with TinyMPC with kernel breakdowns.

Fig. 19. End-to-End Performance Comparison of Saturn vs Gemmini on End-
to-End Workload TinyMPC with Kernal Breakdown

often only utilize 4 vector lanes at most, Saturn configurations
with a DLEN of 128 are more efficient compared to their
counterparts with a DLEN of 256. Furthermore, achieving
the highest optimal performance required both a superscalar
Shuttle frontend and a DLEN=256 backend. However, interest-
ingly, the single-issue reference design outperformed the DSP
and general-purpose Saturn configurations for a DLEN=256,
even though both of those configurations should outperform
the single-issue reference design. Further investigations could
include evaluating more area-minimal Saturn configurations.
Currently, under 1.4mm2, a Rocket core is the most effi-
cient implementation. However, minimal Saturn configurations
could result in improved performance in this domain due
to Saturn’s instruction sequencing. For higher-performance
configurations, hardware support for explicitly operating on
small, dense matrices could improve Saturn’s performance
as the vector and datapath lengths scale beyond what was
evaluated in this work.

Evaluating multiple configurations for Gemmini was more
challenging, as programming Gemmini using its low-level
assembly interface requires manual rewriting across changes
to the mesh. Because of this, we primarily focused on creating
a single, well-optimized implementation for the OSGem-

miniRocket configuration, which uses a 4×4 output-stationary
FP32 mesh, evaluated with both a 64KB and 32KB scratchpad.
Furthermore, we include the area report for an equivalent
weight stationary design, which requires the generation of a
1KB accumulator memory for computing intermediate results.
However, this implementation has significantly worse perfor-
mance since the software optimizations aside from software
unrolling and static mapping have not been implemented for
this design. Under an area window of 1.5mm2 to 2.3mm2,
Gemmini is the optimal design, even without the use of
hardware support for GEMV operations. In this case, the
efficiency improvements could be due to the ability to fuse
scaling and matrix operations, alongside the fact that the
fine-grained instruction sequencing works well with blocks
of matrices that are multiples of 4. To achieve a more
thorough understanding of Gemmini’s end-to-end performance
characteristics, future evaluations can consider other mesh
dimensions, smaller scratchpad capacities, as well as hardware
modifications such as the GEMV support presented in this
work, as well as activation and pooling functions suitable for
classical control workloads.

B. Area Evaluation

To understand area usage, we use post-synthesis area results
generated by ASAP7 toolkit [6]. We found that both Gemmini
and Saturn consume relatively smaller areas than an out-
of-order MegaBOOM core with 2FPUs [27]. Gemmini has
smaller areas overhead (1.5-2mm2). A breakdown of the area
for a 4×4 output stationary Gemmini with a 32KB scratchpad
and a V512D256 reference Saturn, both driven by a Rocket
core, is depicted in Figure 21. Proportionally, the FPFMAs in
Gemmini’s mesh combined with the scratchpad contribute to a
greater proportion of the design than in Saturn. However, this
is because Saturn also supports a vectorized integer pipeline.
Additionally, Gemmini’s scratchpad has 16× the capacity of
the Saturn register file despite only using 35% more area. This
is because the scratchpad is synthesized with SRAMs, whereas
the Saturn design uses flip-flops. This suggests that Saturn’s
area could be significantly improved by using a more dense
memory technology for the register file and by replacing the
integer backend with a simplified scalar design to better align
with the computing requirements of robotics workloads.

Additional area report Table II provides a comparison of
Gemmini with and without our GEMV architectural change.
The additional 2% area increment in a 4x4 mesh is attributed
to the extra scratchpad banks since our feature needs at
least DIM + 1 banks to ensure all the necessary data for
the mesh is loaded in one cycle. In all runs, we configured
Gemmini to have DIM + 1 scratchpad banks, rounded up to
the nearest power of 2. This is a current requirement of a legal
Gemmini configuration; however, we would like to address
this constraint in the future. Currently, as DIM scales, the
utilization of these extra banks decreases, making a 16x16
mesh where 15 banks are in excess impractical. This can be
attributed to the extra logic per scratchpad bank, as traditional
Gemmini only utilizes the 2 banks in a single computer. The
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Fig. 20. Saturn vs Gemmini Performance vs Area Tradeoffs

area is largely dominated by scratchpad banks, which would
benefit from the changes stated above. Looking further, the
mesh area has been insignificantly impacted by our design due
to the lack of logic between the mesh columns. On the other
hand, ExecuteController grows 9.2% in size between 4×4
GEMM and 4×4 GEMV as it shoulders more responsibility
to distribute data from different scratchpad banks to every PE.
This relationship appears to be linear as DIM scales, as the
area grows by 18% between 8×8 GEMM and 8×8 GEMV.

TABLE I
PERFORMANCE AND AREA METRICS OF SCALAR, VECTOR, AND

SYSTOLIC ARCHITECTURES

Categories Configurations Area Performance
(um2) (Cycles/solve)

CPU

TinyRocket 186,963 —
Rocket 486,287 392,261.0
Shuttle 826,608 —

SmallBoom 1,212,513 330,139.0
MediumBoom 1,537,374 226,510.4

LargeBoom 2,570,964 183,907.0
MegaBoom 381,402,3 134,356.7

Saturn

RefV512D128Rocket 1,340,095 171,189.4
RefV512D256Rocket 1,786,260 156,721.1
RefV512D128Shuttle 2,262,203 121,870.0
RefV512D256Shuttle 2,840,849 105,611.2

Gemmini
OSGemminiRocket32KB 1,506,498 132,696.9
OSGemminiRocket64KB 1,726,167 132,696.9
WSGemminiRocket64KB 1,916,970 344,682.5
OSGemminiRocket64KB 2147008 132,696.9

VII. CONCLUSION

Our profiling and optimization across various computing
platforms ranging from CPUs and vector machines to domain-
specialized accelerators encompass both kernel-level bench-
marks and a comprehensive end-to-end robotic workload. We
compare integrated accelerators like RISC-V cores with vector
extensions to more decoupled systems such as systolic arrays,
evaluating their performance, area efficiency, and utilization.
This exploration not only quantifies the trade-offs inherent
between these architectural paradigms but also underscores

how the choice of hardware architecture is contingent upon
specific workload characteristics and application demands.

This project conducts a thorough design space exploration
for architecture research for classical and optimization-based
algorithms for embedded robotics applications. Different ar-
chitectures are optimal under each area constraint, and well-
optimized software mappings are critical to achieve improved
performance. To address these challenges and open questions,
future work will involve design-space exploration across a
broader spectrum of hardware design spaces, as well as
robotics algorithms.

A significant challenge for deploying optimized robotics
algorithms on specialized hardware is the engineering over-
head of hand-optimizing the software mapping. To facilitate
rapid evaluation of new hardware designs, we pursue two
potential options. First, we explore a library-based approach
supporting common operations. Existing interfaces such as
Eigen [10] result in poor utilization for small operands, and
do not provide clean abstractions for specialized memory units
such as software-managed scratchpads.

To address this, we develop the matlib library, with
ongoing work on applying optimizations such as kernel fusion.
Currently matlib is implemented using RVV intrinsic, and
has planned support for the Gemmini ISA. We are currently
developing automated code-generation flows to emit optimized
embedded solvers on top of the matlib interface, with the
end goal of being able to pass in hardware configurations
and robot parameters (which impact matrix and vector sizes),
generating optimized libraries for the desired targets. A second
approach is to express robotic algorithms directly as computa-
tion graphs in an intermediate representation such as an MLIR
[?] dialect and adapt end-to-end code-generation techniques.

Additionally, realistic robotics workloads consist of multiple
software nodes executing concurrently on an embedded SoC.
Given optimized mappings of multiple algorithms to several
hardware backends, future work will consider strategies for
dynamically scheduling these systems while addressing phys-
ical and computational constraints in robotic systems.
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Fig. 21. Gemmini vs Saturn area breakdown

4x4 GEMM 4x4 GEMV 8x8 GEMM 8x8 GEMV
Cell Count Area Percentage Cell Count Area Percentage Cell Count Area Percentage Cell Count Area Percentage

RocketTile 355448 2981579.833 100.00% 364171 3431062.477 100.00% 444474 3029321.036 100.00% 509930 3218630.633 100.00%
Gemmini 264805 2488116.71 83.45% 273528 2937598.421 85.62% 353629 2535848.862 83.71% 419434 2725373.477 84.67%
Scratchpad 84384 1998508.846 67.03% 89943 2439544.441 71.10% 116586 1908130.736 62.99% 133421 2054100.891 63.82%
Mesh 17669 43827.618 1.47% 17635 44323.8 1.29% 70045 173683.16 5.73% 69949 176043.669 5.47%
ExecuteController 27391 71909.518 2.41% 29640 78528.903 2.29% 84120 212707.921 7.02% 98092 248889.148 7.73%
ReservationStation 20193 63583.088 2.13% 20447 64351.589 1.88% 19564 61376.576 2.03% 19627 61567.409 1.91%
LoadController 3760 11669.458 0.39% 3746 11723.614 0.34% 3852 11987.269 0.40% 3870 11956.434 0.37%
StoreController 5444 13872.202 0.47% 5454 13884.839 0.40% 5304 13378.469 0.44% 5304 13377.983 0.42%
Other 90643 493463.123 16.55% 106663 285241.235 8.31% 54158 154584.731 5.10% 62357 159437.943 4.95%

TABLE II
COMPARISON OF AREA WITH GEMV SUPPORT ENABLED
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APPENDIX

As part of our benchmarking process in this project, we have
developed new features and infrastructure in the following
repositories:

• Profiling and Acceleration Result: https://github.com/ucb-
bar/Accelerated-TinyMPC/tree/rvv handopt

• matlib interface:
– https://github.com/ucb-bar/matlib

• Gemmini GEMV Hardware: https://github.com/ucb-bar/
gemmini/tree/gemv-support

• Gemmini GEMV Software: https://github.com/ucb-bar/
gemmini-rocc-tests/tree/gemv-support
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