Learning a Prior over Intent via Meta-Inverse Reinforcement Learning

Kelvin Xu, Ellis Ratner, Anca Dragan, Sergey Levine, Chelsea Finn
Where does the reward come from?

Computer Games

reward

Mnih et al. ‘15

Real World Scenarios

robotics
dialog
autonomous driving

what is the reward?
often use a proxy

frequently easier to provide expert data

Inverse RL: infer reward function from roll-outs of expert policy
Can we infer a reward from one or a few demonstrations?

Robots need **prior knowledge** & **context**.

How can robots **leverage prior experience** for **representing goals**?
Key intuition:
Learn a prior over human intent & then use learned prior to infer reward function in new scenario from a few demonstrations.

Navigation Problem:
- set of navigation tasks
- grass vs. dirt traversal preference
- landmark-directed navigation

Learn prior across tasks through meta-inverse reinforcement learning.
Meta-Inverse Reinforcement Learning

Meta-training time

Learn a prior over intent through meta-learning over meta-training tasks: T_{train}

Evaluation time

New task T

Rapid adaptation

$\theta' = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, T)$

Adapted reward $T\theta'$
Background: Model-Agnostic Meta-Learning

Key idea: Train over many tasks, to learn parameter vector θ that transfers

Fine-tuning

\[\theta \leftarrow \theta - \alpha \nabla_\theta L_{\text{train}}(\theta) \]

Our method

\[\min_\theta \sum_{\text{task } i} L^i_{\text{test}}(\theta - \alpha \nabla_\theta L^i_{\text{train}}(\theta)) \]

Intuition: Learning a prior over tasks, and at test time, inferring parameters under prior

(Grant et al. ICLR ’18)

Finn, Abbeel, Levine ICML ’17
Our approach: embed deep MaxEnt IRL [1,2] into meta-learning

\[\min_{\theta} \sum_{\text{task } i} \mathcal{L}^i_{\text{test}}(\theta - \alpha \nabla_{\theta} \mathcal{L}^i_{\text{train}}(\theta)) \]

MandRIL
Meta Reward and Intention Learning
Experiments

At meta-test time:
- Provide a few demos

training environment test environment (landmarks shuffled)

Comparisons:

MandRIL (ours) • Evaluate learned reward in original and new environment.

IRL from scratch • Compare value of optimal policy under true vs. learned reward

IRL from scratch • MaxEnt IRL only using demonstrations at meta-test time

Conditional Model • Condition reward model on visitation frequencies of demonstration

Recurrent Meta-Learner • Condition reward model on demonstration trajectories
Experiments

Meta-Test Training Performance

- MandRIL (ours)
- Conditional Model
- Recurrent Meta-Learner
- From Scratch

Meta-Test Testing Performance

- MandRIL (ours)
- Conditional Model
- Recurrent Meta-Learner
- From Scratch

value difference (lower is better)

number of demonstrations
Experiments

What about unseen landmarks?

Meta-Test Testing Performance

Unseen (Out of Domain) Objects

value difference (lower is better)

number of demonstrations
Future Directions

Do you need an entire demonstration to infer the goal?

Learn to **infer goals** from a few **positive examples**. (Xie, Singh, Levine, Finn ’18)

Explore less restricting IRL algorithms.

MaxEnt IRL applies to **tabular MDPs with known dynamics**. (so that it is easy to solve MDP in inner loop of IRL)
Reward learning is easier and more efficient with prior knowledge. Priors can be learned from data via meta-learning.
Reward learning is **easier** and **more efficient** with prior knowledge. Priors can be learned from data via **meta-learning**.

Collaborators

Kelvin Xu
Ellis Ratner
Anca Dragan
Sergey Levine

Questions?

cbfinn@eecs.berkeley.edu