
A Quick Introduction to A Quick Introduction to
Data Stream Data Stream
AlgorithmicsAlgorithmics

Minos GarofalakisMinos Garofalakis
Yahoo! Research & UC BerkeleyYahoo! Research & UC Berkeley

minos@acm.orgminos@acm.org

A Quick Intro to Data Stream Algorithmics – CS262
2

Streams – A Brave New World
 Traditional DBMS: data stored in finite, persistent data sets

 Data Streams: distributed, continuous, unbounded, rapid,
time varying, noisy, . . .

 Data-Stream Management: variety of modern applications
– Network monitoring and traffic engineering
– Sensor networks
– Telecom call-detail records
– Network security
– Financial applications
– Manufacturing processes
– Web logs and clickstreams
– Other massive data sets…

A Quick Intro to Data Stream Algorithmics – CS262
3

 Data is continuously growing faster than our ability
to store or index it

 There are 3 Billion Telephone Calls in US each day,
30 Billion emails daily, 1 Billion SMS, IMs

 Scientific data: NASA's observation satellites
generate billions of readings each per day

 IP Network Traffic: up to 1 Billion packets per hour
per router. Each ISP has many (hundreds) routers!

 Whole genome sequences for many species now
available: each megabytes to gigabytes in size

Massive Data Streams

A Quick Intro to Data Stream Algorithmics – CS262
4

Massive Data Stream Analysis

Must analyze this massive data:
 Scientific research (monitor environment, species)
 System management (spot faults, drops, failures)
 Business intelligence (marketing rules, new offers)
 For revenue protection (phone fraud, service abuse)

Else, why even measure this data?

A Quick Intro to Data Stream Algorithmics – CS262
5

Example: IP Network Data

 Networks are sources of massive data: the metadata per
hour per IP router is gigabytes

 Fundamental problem of data stream analysis:
Too much information to store or transmit

 So process data as it arrives – One pass, small space:
the data stream approach

 Approximate answers to many questions are OK, if
there are guarantees of result quality

A Quick Intro to Data Stream Algorithmics – CS262
6

IP Network Monitoring Application

 24x7 IP packet/flow data-streams at network elements
 Truly massive streams arriving at rapid rates

– AT&T/Sprint collect ~1 Terabyte of NetFlow data each day

 Often shipped off-site to data warehouse for off-line analysis

 Source Destination Duration Bytes Protocol
 10.1.0.2 16.2.3.7 12 20K http
 18.6.7.1 12.4.0.3 16 24K http
 13.9.4.3 11.6.8.2 15 20K http
 15.2.2.9 17.1.2.1 19 40K http
 12.4.3.8 14.8.7.4 26 58K http
 10.5.1.3 13.0.0.1 27 100K ftp
 11.1.0.6 10.3.4.5 32 300K ftp
 19.7.1.2 16.5.5.8 18 80K ftp

Example NetFlow
IP Session Data

DSL/Cable
Networks

• Broadband
 Internet Access

Converged IP/MPLS
Core

PSTNEnterprise
Networks

• Voice over IP• FR, ATM, IP VPN

Network Operations
Center (NOC)

SNMP/RMON,
NetFlow records

Peer

A Quick Intro to Data Stream Algorithmics – CS262
7

Packet-Level Data Streams

Single 2Gb/sec link; say avg packet size is 50bytes
 Number of packets/sec = 5 million
Time per packet = 0.2 microsec
 If we only capture header information per packet: src/dest IP,

time, no. of bytes, etc. – at least 10bytes.
– Space per second is 50Mb

– Space per day is 4.5Tb per link

– ISPs typically have hundreds of links!

 Analyzing packet content streams – whole different
ballgame!!

A Quick Intro to Data Stream Algorithmics – CS262
8

Network Monitoring Queries

DBMS
(Oracle, DB2)

Back-end Data Warehouse

Off-line analysis –
slow, expensive

DSL/Cable
Networks

Enterprise
Networks

Peer

Network Operations
Center (NOC)

What are the top (most frequent) 1000 (source,
dest) pairs seen over the last month?

SELECT COUNT (R1.source, R2.dest)
FROM R1, R2
WHERE R1.dest = R2.source

SQL Join Query

How many distinct (source, dest) pairs have
been seen by both R1 and R2 but not R3?

Set-Expression Query

PSTN

 Extra complexity comes from limited space and time
 Solutions exist for these and other problems

R1

R2

R3

A Quick Intro to Data Stream Algorithmics – CS262
9

Real-Time Data-Stream Analysis

 Must process network streams in real-time and one pass
 Critical NM tasks: fraud, DoS attacks, SLA violations

– Real-time traffic engineering to improve utilization
 Tradeoff result accuracy vs. space/time/communication

– Fast responses, small space/time
– Minimize use of communication resources

IP Network

PSTN

DSL/Cable
Networks

Network Operations
Center (NOC)

BGP

A Quick Intro to Data Stream Algorithmics – CS262
10

Sensor Networks

 Wireless sensor networks becoming ubiquitous in
environmental monitoring, military applications, …

 Many (100s, 103, 106?) sensors scattered over terrain
 Sensors observe and process a local stream of readings:

– Measure light, temperature, pressure…
– Detect signals, movement, radiation…
– Record audio, images, motion…

A Quick Intro to Data Stream Algorithmics – CS262
11

Sensornet Querying Application

 Query sensornet through a (remote) base station
 Sensor nodes have severe resource constraints

– Limited battery power, memory, processor, radio range…
– Communication is the major source of battery drain
– “transmitting a single bit of data is equivalent to 800

instructions” [Madden et al.’02]

base station
(root, coordinator…)

h
tt

p
:/

/w
w

w
.i
n
te

l.
co

m
/r

e
se

a
rc

h
/e

x
p

lo
ra

to
ry

/m
o
te

s.
h

tm

A Quick Intro to Data Stream Algorithmics – CS262
12

Lecture Outline
 Motivation & Streaming Applications

 Centralized Stream Processing

– Basic streaming models and tools

– Stream synopses and applications

Sampling, sketches

 Conclusions

A Quick Intro to Data Stream Algorithmics – CS262
13

Data Streaming Model
 Underlying signal: One-dimensional array A[1…N] with

values A[i] all initially zero
– Multi-dimensional arrays as well (e.g., row-major)

 Signal is implicitly represented via a stream of update tuplesstream of update tuples
– j-th update is <x, c[j]> implying

 A[x] := A[x] + c[j] (c[j] can be >0, <0)

Goal: Compute functions on A[] subject to
– Small space
– Fast processing of updates
– Fast function computation
– …

 Complexity arises from massive length and domain
size (N) of streams

A Quick Intro to Data Stream Algorithmics – CS262
14

Example IP Network Signals

 Number of bytes (packets) sent by a source IP address
during the day
– 2^(32) sized one-d array; increment only

 Number of flows between a source-IP, destination-IP
address pair during the day
– 2^(64) sized two-d array; increment only, aggregate

packets into flows

 Number of active flows per source-IP address
– 2^(32) sized one-d array; increment and decrement

A Quick Intro to Data Stream Algorithmics – CS262
15

Streaming Model: Special Cases

 Time-Series Model
– Only x-th update updates A[x] (i.e., A[x] := c[x])

 Cash-Register Model: Arrivals-Only Streams
– c[x] is always > 0
– Typically, c[x]=1, so we see a multi-set of items in one pass

– Example: <x, 3>, <y, 2>, <x, 2> encodes
the arrival of 3 copies of item x,
2 copies of y, then 2 copies of x.

– Could represent, e.g., packets on a network; power usage

x
y

A Quick Intro to Data Stream Algorithmics – CS262
16

Streaming Model: Special Cases
 Turnstile Model: Arrivals and Departures

– Most general streaming model
– c[x] can be >0 or <0

 Arrivals and departures:
– Example: <x, 3>, <y,2>, <x, -2> encodes

 final state of <x, 1>, <y, 2>.
– Can represent fluctuating quantities, or measure

differences between two distributions

x
y

 Problem difficulty varies depending on the model
– E.g., MIN/MAX in Time-Series vs. Turnstile!

A Quick Intro to Data Stream Algorithmics – CS262
17

Approximation and Randomization

 Many things are hard to compute exactly over a stream
– Is the count of all items the same in two different streams?
– Requires linear space to compute exactly

 Approximation: find an answer correct within some factor
– Find an answer that is within 10% of correct result
– More generally, a (1± ε) factor approximation

 Randomization: allow a small probability of failure
– Answer is correct, except with probability 1 in 10,000
– More generally, success probability (1-δ)

 Approximation Approximation andand Randomization Randomization: (ε, δ)-approximations

A Quick Intro to Data Stream Algorithmics – CS262
18

Probabilistic Guarantees
 User-tunable (ε,δ)-approximations

– Example: Actual answer is within 5 ± 1 with prob ≥ 0.9
 Randomized algorithms: Answer returned is a specially-

built random variablerandom variable
– Unbiased (correct on expectation)
– Combine several Independent Identically Distributed (iid)

instantiations (average/median)
 Use Tail Inequalities to give probabilistic bounds on

returned answer
– Markov Inequality
– Chebyshev Inequality
– Chernoff Bound
– Hoeffding Bound

A Quick Intro to Data Stream Algorithmics – CS262
19

Basic Tools: Tail Inequalities
 General bounds on tail probability of a random variable

(that is, probability that a random variable deviates far
from its expectation)

 Basic Inequalities: Let X be a random variable with
expectation and variance Var[X]. Then, for any

µε µ µε

Probability
distribution

Tail probability

0>εµ

Markov: Chebyshev:
22εμ

Var[X]
με)|μXPr(| ≤≥−

ε1

1
ε)μ)(1Pr(X

+
≤+≥

A Quick Intro to Data Stream Algorithmics – CS262
20

Tail Inequalities for Sums
 Possible to derive stronger bounds on tail probabilities for

the sum of independent random variables

 Hoeffding Bound: Let X1, ..., Xm be independent random

variables with 0· Xi · r. Let and be the

expectation of . Then, for any ,

 Application: Sample average ¼ population average
– See below…

2

2

r

2mε

2expε)|μXPr(|
−

≤≥−

0>ε
∑=

i iXm
X

1 µ
X

A Quick Intro to Data Stream Algorithmics – CS262
21

Tail Inequalities for Sums
 Possible to derive even stronger bounds on tail probabilities

for the sum of independent Bernoulli trials

 Chernoff Bound: Let X1, ..., Xm be independent Bernoulli

trials such that Pr[Xi=1] = p (Pr[Xi=0] = 1-p). Let

and be the expectation of . Then, for any ,

 Application: Sample selectivity ¼ population selectivity
– See below…

 Remark: Chernoff bound results in tighter bounds for count
queries compared to Hoeffding bound

2
με2

2expμε)|μXPr(|
−

≤≥−

0>ε
∑=

i iXX
mp=µ X

A Quick Intro to Data Stream Algorithmics – CS262
22

Data-Stream Algorithmics Model

 Approximate answers– e.g. trend analysis, anomaly detection
 Requirements for stream synopses

– Single Pass: Each record is examined at most once
– Small Space: Log or polylog in data stream size
– Small-time: Low per-record processing time (maintain synopses)
– Also: delete-proof, composable, …

 Stream Processor

Approximate Answer
with Error Guarantees
“Within 2% of exact
answer with high
probability”

Stream Synopses
 (in memory)

Continuous Data Streams

Query Q

R1

Rk

(Terabytes) (Kilobytes)

Sampling & Sketches

A Quick Intro to Data Stream Algorithmics – CS262
24

Sampling: Basics
 Idea: A small random sample S of the data often well-

represents all the data
– For a fast approx answer, apply “modified” query to S
– Example: select agg from R where R.e is odd

(n=12)

– If agg is avg, return average of odd elements in S
– If agg is count, return average over all elements e in S of

 n if e is odd
 0 if e is even

 Unbiased EstimatorUnbiased Estimator (for count, avg, sum, etc.)
– Bound error using Hoeffding (sum, avg) or Chernoff (count)

Data stream: 9 3 5 2 7 1 6 5 8 4 9 1

Sample S: 9 5 1 8

answer: 5

answer: 12*3/4 =9

A Quick Intro to Data Stream Algorithmics – CS262
25

Sampling from a Data Stream

 Fundamental problem: sample m items uniformly from
stream
– Useful: approximate costly computation on small sample

 Challenge: don’t know how long stream is
– So when/how often to sample?

 Two solutions, apply to different situations:
– Reservoir sampling (dates from 1980s?)
– Min-wise sampling (dates from 1990s?)

A Quick Intro to Data Stream Algorithmics – CS262
26

Reservoir Sampling

 Sample first m items
 Choose to sample the i’th item (i>m) with probability m/i
 If sampled, randomly replace a previously sampled item

 Optimization: when i gets large, compute which item will
be sampled next, skip over intervening items [Vitter’85]

A Quick Intro to Data Stream Algorithmics – CS262
27

Reservoir Sampling - Analysis

 Analyze simple case: sample size m = 1
 Probability i’th item is the sample from stream length n:

– Prob. i is sampled on arrival × prob. i survives to end

 1 i i+1 n-2 n-1
 i i+1 i+2 n-1 n

× × … ×

= 1/n

 Case for m > 1 is similar, easy to show uniform probability
 Drawbacks of reservoir sampling: hard to parallelize

A Quick Intro to Data Stream Algorithmics – CS262
28

Min-wise Sampling

 For each item, pick a random fraction between 0 and 1
 Store item(s) with the smallest random tag [Nath et

al.’04]

0.391 0.908 0.291 0.555 0.619 0.273

 Each item has same chance of least tag, so uniform
 Can run on multiple streams separately, then merge

A Quick Intro to Data Stream Algorithmics – CS262
29

Sketches

 Not every problem can be solved with sampling
– Example: counting how many distinct items in the stream
– If a large fraction of items aren’t sampled, don’t know if

they are all same or all different
 Other techniques take advantage that the algorithm can

“see” all the data even if it can’t “remember” it all
 ““Sketch”:Sketch”: essentially, a linear transform of the input

– Model stream as defining a vector, sketch is result of
multiplying stream vector by an (implicit) matrix

linear projection

A Quick Intro to Data Stream Algorithmics – CS262
30

Count-Min Sketch [Cormode, Muthukrishnan’04]

 Simple sketch idea, can be used for as the basis of many
different stream mining tasks
– Join aggregates, range queries, moments, …

 Model input stream as a vector A of dimension N
 Creates a small summary as an array of w × d in size
 Use d hash functions to map vector entries to [1..w]
 Works on arrivals only and arrivals & departures streams

W

dArray:
CM[i,j]

A Quick Intro to Data Stream Algorithmics – CS262
31

CM Sketch Structure

 Each entry in input vector A[] is mapped to one bucket
per row
– h()’s are pairwise independent

 Merge two sketches by entry-wise summation
 Estimate A[j] by taking mink { CM[k,hk(j)] }

+c

+c

+c

+c

h1(j)

hd(j)

<j, +c>

d=
log 1/δ

w = 2/ε

A Quick Intro to Data Stream Algorithmics – CS262
32

CM Sketch Guarantees
 [Cormode, Muthukrishnan’04] CM sketch guarantees

approximation error on point queries less than ε||A||1 in space
O(1/ε log 1/δ)
– Probability of more error is less than 1-δ
– Similar guarantees for range queries, quantiles, join size,…

 Hints
– Counts are biased (overestimates) due to collisions

 Limit the expected amount of extra “mass” at each
bucket?

– Use independence across rows to boost the confidence for
the min{} estimate
 Based on independence of row hashes

A Quick Intro to Data Stream Algorithmics – CS262
33

CM Sketch Analysis

Estimate A’[j] = mink { CM[k,hk(j)] }

 Analysis: In k'th row, CM[k,hk(j)] = A[j] + Xk,j

– Xk,j = Σ A[i] | hk(i) = hk(j)

– E[Xk,j] = Σ A[i]*Pr[hk(i)=hk(j)]

≤ (ε/2) * Σ A[i] = ε ||A||1/2 (pairwise independence of h)

– Pr[Xk,j ≥ ε||A||1] = Pr[Xk,j ≥ 2E[Xk,j]] ≤ 1/2 by Markov inequality

 So, Pr[A’[j]≥ A[j] + ε ||A||1] = Pr[∀ k. Xk,j>ε ||A||1] ≤1/2log 1/δ
 = δ

 Final result: with certainty A[j] ≤ A’[j] and

with probability at least 1-δ, A’[j]< A[j] + ε ||A||1

A Quick Intro to Data Stream Algorithmics – CS262
34

Distinct Value Estimation
 Problem: Find the number of distinct values in a stream of

values with domain [1,...,N]
– Zeroth frequency moment , L0 (Hamming) stream norm
– Statistics: number of species or classes in a population
– Important for query optimizers
– Network monitoring: distinct destination IP addresses,

source/destination pairs, requested URLs, etc.

 Example (N=64)

 Hard problem for random sampling! [Charikar et al.’00]
– Must sample almost the entire table to guarantee the estimate is

within a factor of 10 with probability > 1/2, regardless of the
estimator used!

 AMS and CM only good for multiset semanticsmultiset semantics

Data stream: 3 2 5 3 2 1 7 5 1 2 3 7

Number of distinct values: 5

0F

A Quick Intro to Data Stream Algorithmics – CS262
35

0

FM Sketch [Flajolet, Martin’85]

 Estimates number of distinct inputs (count distinct)
 Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …
– Easy to construct h() from a uniform hash function by

counting trailing zeros
 Maintain FM Sketch = bitmap array of L = log N bits

– Initialize bitmap to all 0s
– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6 5 4 3 2 1

A Quick Intro to Data Stream Algorithmics – CS262
36

FM Sketch Analysis

 If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]…

– Let R = position of rightmost zero in FM, indicator of log(d)
– Basic estimate d = c2R for scaling constant c ≈ 1.3
– Average many copies (different hash fns) improves accuracy

fringe of 0/1s
around log(d)

0 0 0 00 1

FM BITMAP

0 00 111 1 11111

position ≪ log(d)position ≫ log(d)

1L R

A Quick Intro to Data Stream Algorithmics – CS262
37

FM Sketch Properties
 With O(1/ε2 log 1/δ) copies, get (1±ε) accuracy with

probability at least 1-δ [Bar-Yossef et al’02], [Ganguly et al.’04]

– 10 copies gets ≈ 30% error, 100 copies < 10% error

 Delete-Proof: Use counters instead of bits in sketch locations

– +1 for inserts, -1 for deletes
 Composable: Component-wise OR/add distributed sketches

together

– Estimate |S1 [[Sk| = set union cardinality

00 0 1 11

6 5 4 3 2 1

00 1 1 10

6 5 4 3 2 1

00 1 1 11

6 5 4 3 2 1

+ =

A Quick Intro to Data Stream Algorithmics – CS262
38

Sketching and Sampling Summary

 Sampling and sketching ideas are at the heart of many
stream mining algorithms
– Moments/join aggregates, histograms, wavelets, top-k,

frequent items, other mining problems, …
 A sample is a quite general representative of the data set;

sketches tend to be specific to a particular purpose
– FM sketch for count distinct, CM/AMS sketch for joins /

moment estimation, …
 Traditional sampling does not work in the turnstile (arrivals

& departures) model
– BUT… see recent generalizations of distinct sampling

[Ganguly et al.’04], [Cormode et al.’05]; as well as [Gemulla
et al.’08]

A Quick Intro to Data Stream Algorithmics – CS262
39

Practicality

 Algorithms discussed here are quite simple and very fast
– Sketches can easily process millions of updates per second

on standard hardware
– Limiting factor in practice is often I/O related

 Implemented in several practical systems:
– AT&T’s Gigascope system on live network streams
– Sprint’s CMON system on live streams
– Google’s log analysis

 Sample implementations available on the web
– http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

– or web search for ‘massdal’

A Quick Intro to Data Stream Algorithmics – CS262
40

Conclusions
 Data Streaming: Major departure from traditional

persistent database paradigm
– Fundamental re-thinking of models, assumptions, algorithms,

system architectures, …

 Many new streaming problems posed by developing
technologies

 Simple tools from approximation and/or randomization play
a critical role in effective solutions
– Sampling, sketches (CM, FM, …), …

– Simple, yet powerful, ideas with great reach

– Can often “mix & match” for specific scenarios

A Quick Intro to Data Stream Algorithmics – CS262
41

http://www.cs.berkeley.edu/~minos/http://www.cs.berkeley.edu/~minos/

 minos@acm.orgminos@acm.org

http://www.cs.berkeley.edu/~minos/
mailto:minos@acm.org

A Quick Intro to Data Stream Algorithmics – CS262
42

References (1)
[Aduri, Tirthapura ’05] P. Aduri and S. Tirthapura. Range-efficient Counting of F0 over Massive Data Streams. In

IEEE International Conference on Data Engineering, 2005
[Agrawal et al. ’04] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond: New

aggregation techniques for sensor networks. In ACM SenSys, 2004
[Alon, Gibbons, Matias, Szegedy ’99] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join

sizes in limited storage. In Proceedings of ACM Symposium on Principles of Database Systems, pages 10–
20, 1999.

[Alon, Matias, Szegedy ’96] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. In Proceedings of the ACM Symposium on Theory of Computing, pages 20–29, 1996.
Journal version in Journal of Computer and System Sciences, 58:137–147, 1999.

[Babcock et al. '02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues in Data
Stream Systems In ACM Principles of Database Systems, 2002

[Bar-Yossef et al.’02] Z. Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, Luca Trevisan: Counting Distinct
Elements in a Data Stream. Proceedings of RANDOM 2002.

[Chu et al'06] D. Chu, A. Deshpande, J. M. Hellerstein, W. Hong. Approximate Data Collection in Sensor
Networks using Probabilistic Models. IEEE International Conference on Data Engineering 2006, p48

[Considine, Kollios, Li, Byers ’05] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate aggregation
techniques for sensor databases. In IEEE International Conference on Data Engineering, 2004.

[Cormode, Garofalakis '05] G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed
approximate query tracking. In Proceedings of the International Conference on Very Large Data Bases,
2005.

[Cormode et al.'05] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggregates in a
networked world: Distributed tracking of approximate quantiles. In Proceedings of ACM SIGMOD
International Conference on Management of Data, 2005.

[Cormode, Muthukrishnan ’04] G. Cormode and S. Muthukrishnan. An improved data stream summary: The
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2004.

[Cormode, Muthukrishnan ’05] G. Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams.
In Proceedings of ACM Principles of Database Systems, 2005.

A Quick Intro to Data Stream Algorithmics – CS262
43

References (2)
[Cormode et al. ’05] G. Cormode,S. Muthukrishnan, I. Rozenbaum. Summarizing and Mining Inverse

Distributions on Data Streams via Dynamic Inverse Sampling . In Proceedings of VLDB 2005.
[Cormode et al.’06] Graham Cormode, Minos N. Garofalakis, Dimitris Sacharidis: Fast Approximate Wavelet

Tracking on Streams. In Proceedings of EDBT 2006.
[Das et al.’04] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Distributed Set-Expression Cardinality

Estimation. In Proceedings of VLDB, 2004.
[Datar et al.’02] M. Datar, Aristides Gionis, Piotr Indyk, Rajeev Motwani. Maintaining stream statistics over sliding

windows (extended abstract). In Proceedings of SODA 2002.
[Deshpande et al'04] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, W. Hong. Model-Driven Data

Acquisition in Sensor Networks. In VLDB 2004, p 588-599
[Deshpande et al'05] A. Deshpande, C. Guestrin, W. Hong, S. Madden. Exploiting Correlated Attributes in

Acquisitional Query Processing. In IEEE International Conference on Data Engineering 2005, p143-154
[Dilman, Raz ’01] M. Dilman, D. Raz. Efficient Reactive Monitoring. In IEEE Infocom, 2001.
[Dobra et al.’02] A. Dobra, M. Garofalakis, J, Gehrke, R. Rastogi. Processing Complex Aggregate Queries over

Data Streams. In Proceedings of ACM SIGMOD International Conference on Management of Data, 2002.
[Dobra et al.’04] A. Dobra, M. Garofalakis, J, Gehrke, R. Rastogi. Sketch-Based Multi-query Processing over

Data Streams. In Proceedings of EDBT 2004.
[Flajolet, Martin ’83] P. Flajolet and G. N. Martin. Probabilistic counting. In IEEE Conference on Foundations of

Computer Science, pages 76–82, 1983. Journal version in Journal of Computer and System Sciences,
31:182–209, 1985.

[Ganguly et al.’04] S. Ganguly, M. Garofalakis, R. Rastogi. Tracking set-expression cardinalities over continuous
update streams. The VLDB Journal, 2004

[Ganguly et al.’04] S. Ganguly, M. Garofalakis, R. Rastogi. Processing Data-Stream Join Aggregates Using
Skimmed Sketches. In Proceedings of EDBT 2004.

[Garofalakis et al. '02] M. Garofalakis, J. Gehrke, R. Rastogi. Querying and Mining Data Streams: You Only Get
One Look. Tutorial in ACM SIGMOD International Conference on Management of Data, 2002.

[Garofalakis et al.’07] M. Garofalakis, J. Hellerstein, and P. Maniatis. Proof Sketches: Verifiable Multi-Party
Aggregation. In Proceedings of ICDE 2007.

A Quick Intro to Data Stream Algorithmics – CS262
44

References (3)
[Gemulla et al.’08] Rainer Gemulla, Wolfgang Lehner, Peter J. Haas. Maintaining bounded-size sample synopses

of evolving datasets. In The VLDB Journal, 2008.
[Gibbons’01] P. Gibbons. Distinct Sampling for Highly-Accurate Answers to Distinct Values Queries and Event

Reports. Proceedings of VLDB’2001.
[Gibbons, Tirthapura ’01] P. Gibbons, S. Tirthapura. Estimating simple functions on the union of data streams. In

ACM Symposium on Parallel Algorithms and Architectures, 2001.
[Gilbert et al.’01] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, Martin Strauss. Surfing Wavelets on

Streams: One-Pass Summaries for Approximate Aggregate Queries. In Proceedings of VLDB 2001.
[Greenwald, Khanna ’01] M. Greenwald, S. Khanna. Space-efficient online computation of quantile summaries. In

Proceedings of ACM SIGMOD International Conference on Management of Data, 2001.
[Greenwald, Khanna ’04] M. Greenwald and S. Khanna. Power-conserving computation of order-statistics over

sensor networks. In Proceedings of ACM Principles of Database Systems, pages 275–285, 2004.
[Hadjieleftheriou, Byers, Kollios ’05] M. Hadjieleftheriou, J. W. Byers, and G. Kollios. Robust sketching and

aggregation of distributed data streams. Technical Report 2005-11, Boston University Computer Science
Department, 2005.

[Huang et al.’06] L. Huang, X. Nguyen, M. Garofalakis, M. Jordan, A. Joseph, and N. Taft. Distributed PCA and
Network Anomaly Detection. In NIPS, 2006.

[Huebsch et al.’03] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, I. Stoica. Querying the
Internet with PIER. In VLDB, 2003.

[Jain et al'04] A. Jain, E. Y. Chang, Y-F. Wang. Adaptive stream resource management using Kalman Filters. In
ACM SIGMOD International Conference on Management of Data, 2004.

[Jain, Fall, Patra ’05] S. Jain, K. Fall, R. Patra, Routing in a Delay Tolerant Network, In IEEE Infocom, 2005
[Jain, Hellerstein et al'04] A. Jain, J.M.Hellerstein, S. Ratnasamy, D. Wetherall. A Wakeup Call for Internet

Monitoring Systems: The Case for Distributed Triggers. In Proceedings of HotNets-III, 2004.
[Johnson et al.’05] T. Johnson, S. Muthukrishnan, V. Shkapenyuk, and O. Spateschek. A heartbeat mechanism

and its application in Gigascope. In VLDB, 2005.

A Quick Intro to Data Stream Algorithmics – CS262
45

References (4)
[Kashyap et al. ’06] S. Kashyap, S. Deb, K.V.M. Naidu, R. Rastogi, A. Srinivasan. Efficient Gossip-Based

Aggregate Computation. In ACM Principles of Database Systems, 2006.
[Kempe, Dobra, Gehrke ’03] D. Kempe, A. Dobra, and J. Gehrke. Computing aggregates using gossip. In IEEE

Conference on Foundations of Computer Science, 2003.
[Kempe, Kleinberg, Demers ’01] D. Kempe, J. Kleinberg, and A. Demers. Spatial gossip and resource location

protocols. In Proceedings of the ACM Symposium on Theory of Computing, 2001.
[Kerlapura et al.’06] R. Kerlapura, G. Cormode, and J. Ramamirtham. Communication-efficient distributed

monitoring of thresholded counts. In ACM SIGMOD, 2006.
[Koudas, Srivastava '03] N. Koudas and D. Srivastava. Data stream query processing: A tutorial. In VLDB, 2003.
[Madden ’06] S. Madden. Data management in sensor networks. In Proceedings of European Workshop on

Sensor Networks, 2006.
[Madden et al. ’02] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: a Tiny AGgregation service for ad-

hoc sensor networks. In Proceedings of Symposium on Operating System Design and Implementation,
2002.

[Manjhi, Nath, Gibbons ’05] A. Manjhi, S. Nath, and P. Gibbons. Tributaries and deltas: Efficient and robust
aggregation in sensor network streams. In Proceedings of ACM SIGMOD International Conference on
Management of Data, 2005.

[Manjhi et al.’05] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent items in
distributed data streams. In IEEE International Conference on Data Engineering, pages 767–778, 2005.

[Muthukirshnan '03] S. Muthukrishnan. Data streams: algorithms and applications. In ACM-SIAM Symposium on
Discrete Algorithms, 2003.

[Narayanan et al.’06] D. Narayanan, A. Donnelly, R. Mortier, and A. Rowstron. Delay-aware querying with
Seaweed. In VLDB, 2006.

[Nath et al.’04] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for robust aggrgation
in sensor networks. In ACM SenSys, 2004.

[Olston, Jiang, Widom ’03] C. Olston, J. Jiang, J. Widom. Adaptive Filters for Continuous Queries over
Distributed Data Streams. In ACM SIGMOD, 2003.

A Quick Intro to Data Stream Algorithmics – CS262
46

References (5)
[Pietzuch et al.’06] P. R. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, M. I. Seltzer.

Network-Aware Operator Placement for Stream-Processing Systems. In IEEE ICDE, 2006.
[Pittel ’87] B. Pittel On Spreading a Rumor. In SIAM Journal of Applied Mathematics, 47(1) 213-223,

1987
[Rhea et al. ’05] S. Rhea, G. Brighten, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, Y.

Harlan. OpenDHT: A public DHT service and its uses. In ACM SIGCOMM, 2005
[Rissanen ’78] J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978.
[Sharfman et al.’06] Izchak Sharfman, Assaf Schuster, Daniel Keren: A geometric approach to

monitoring threshold functions over distributed data streams. SIGMOD Conference 2006: 301-312
[Slepian, Wolf ’73] D. Slepian, J. Wolf. Noiseless coding of correlated information sources. IEEE

Transactions on Information Theory, 19(4):471-480, July 1973.
[Vitter’85] Jeffrey S. Vitter. Random Sampling with a reservoir. ACM Trans. on Math. Software, 11(1),

1985.

