A Quick Introduction to Data Stream Algorithmics

Minos Garofalakis
Yahoo! Research & UC Berkeley
minos@acm.org
Streams – A Brave New World

- Traditional DBMS: data stored in *finite, persistent data sets*
- **Data Streams**: distributed, continuous, unbounded, rapid, time varying, noisy, . . .
- **Data-Stream Management**: variety of modern applications
 - Network monitoring and traffic engineering
 - Sensor networks
 - Telecom call-detail records
 - Network security
 - Financial applications
 - Manufacturing processes
 - Web logs and clickstreams
 - Other massive data sets…
Massive Data Streams

- Data is *continuously growing* faster than our ability to store or index it.

- There are 3 Billion **Telephone Calls** in US each day, 30 Billion emails daily, 1 Billion SMS, IMs.

- **Scientific data**: NASA's observation satellites generate billions of readings each per day.

- **IP Network Traffic**: up to 1 Billion packets per hour per router. Each ISP has many (hundreds) routers!

- **Whole genome sequences** for many species now available: each megabytes to gigabytes in size.
Massive Data Stream Analysis

Must analyze this massive data:

- Scientific research (monitor environment, species)
- System management (spot faults, drops, failures)
- Business intelligence (marketing rules, new offers)
- For revenue protection (phone fraud, service abuse)

Else, why even measure this data?
Example: IP Network Data

- Networks are sources of massive data: the metadata per hour per IP router is gigabytes
- Fundamental problem of data stream analysis: *Too much information to store or transmit*
- So process data as it arrives – *One pass, small space: the data stream approach*
- *Approximate answers* to many questions are OK, if there are guarantees of result quality
IP Network Monitoring Application

- 24x7 IP packet/flow data-streams at network elements
- Truly massive streams arriving at rapid rates
 - AT&T/Sprint collect ~1 Terabyte of NetFlow data each day
- Often shipped off-site to data warehouse for off-line analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Duration</th>
<th>Bytes</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.0.2</td>
<td>16.2.3.7</td>
<td>12</td>
<td>20K</td>
<td>http</td>
</tr>
<tr>
<td>18.6.7.1</td>
<td>12.4.0.3</td>
<td>16</td>
<td>24K</td>
<td>http</td>
</tr>
<tr>
<td>13.9.4.3</td>
<td>11.6.8.2</td>
<td>15</td>
<td>20K</td>
<td>http</td>
</tr>
<tr>
<td>15.2.2.9</td>
<td>17.1.2.1</td>
<td>19</td>
<td>40K</td>
<td>http</td>
</tr>
<tr>
<td>12.4.3.8</td>
<td>14.8.7.4</td>
<td>26</td>
<td>58K</td>
<td>http</td>
</tr>
<tr>
<td>10.5.1.3</td>
<td>13.0.0.1</td>
<td>27</td>
<td>100K</td>
<td>ftp</td>
</tr>
<tr>
<td>11.1.0.6</td>
<td>10.3.4.5</td>
<td>32</td>
<td>300K</td>
<td>ftp</td>
</tr>
<tr>
<td>19.7.1.2</td>
<td>16.5.5.8</td>
<td>18</td>
<td>80K</td>
<td>ftp</td>
</tr>
</tbody>
</table>
Packet-Level Data Streams

- Single 2Gb/sec link; say avg packet size is 50 bytes
- Number of packets/sec = 5 million
- Time per packet = 0.2 microsec
- If we only capture header information per packet: src/dest IP, time, no. of bytes, etc. – at least 10 bytes.
 - Space per second is 50 Mb
 - Space per day is 4.5 Tb per link
 - ISPs typically have hundreds of links!
- Analyzing packet content streams – whole different ballgame!!
Network Monitoring Queries

Off-line analysis – slow, expensive

What are the top (most frequent) 1000 (source, dest) pairs seen over the last month?

SELECT COUNT(R1.source, R2.dest) FROM R1, R2 WHERE R1.dest = R2.source

How many distinct (source, dest) pairs have been seen by both R1 and R2 but not R3?

SELECT COUNT(R1.source, R2.dest) FROM R1, R2 WHERE R1.dest = R2.source

Set-Expression Query

SQL Join Query

- Extra complexity comes from *limited space and time*
- Solutions exist for these and other problems
Real-Time Data-Stream Analysis

- Must process network streams in *real-time* and *one pass*
- Critical NM tasks: fraud, DoS attacks, SLA violations
 - Real-time traffic engineering to improve utilization
- Tradeoff *result accuracy vs. space/time/communication*
 - Fast responses, small space/time
 - Minimize use of communication resources
Sensor Networks

- Wireless sensor networks becoming ubiquitous in environmental monitoring, military applications, …
- Many (100s, 10^3, 10^6?) sensors scattered over terrain
- Sensors observe and process a local stream of readings:
 - Measure light, temperature, pressure…
 - Detect signals, movement, radiation…
 - Record audio, images, motion…
Sensornet Querying Application

- Query sensornet through a (remote) base station
- Sensor nodes have severe resource constraints
 - Limited battery power, memory, processor, radio range…
 - Communication is the major source of battery drain
 - “transmitting a single bit of data is equivalent to 800 instructions” [Madden et al.’02]

http://www.intel.com/research/exploratory/motes.htm
Lecture Outline

- Motivation & Streaming Applications
- Centralized Stream Processing
 - Basic streaming models and tools
 - Stream synopses and applications
 - Sampling, sketches
- Conclusions
Data Streaming Model

- **Underlying signal**: One-dimensional array $A[1\ldots N]$ with values $A[i]$ all initially zero
 - Multi-dimensional arrays as well (e.g., row-major)
- Signal is implicitly represented via a *stream of update tuples*
 - j-th update is $<x, c[j]>$ implying
 - $A[x] := A[x] + c[j]$ ($c[j]$ can be >0, <0)

- **Goal**: Compute functions on $A[]$ subject to
 - Small space
 - Fast processing of updates
 - Fast function computation
 - ...
- Complexity arises from massive length and domain size (N) of streams
Example IP Network Signals

- Number of bytes (packets) sent by a source IP address during the day
 - 2^{32} sized one-d array; increment only
- Number of flows between a source-IP, destination-IP address pair during the day
 - 2^{64} sized two-d array; increment only, aggregate packets into flows
- Number of active flows per source-IP address
 - 2^{32} sized one-d array; increment and decrement
Streaming Model: Special Cases

- **Time-Series Model**
 - Only \(x \)-th update updates \(A[x] \) (i.e., \(A[x] := c[x] \))

- **Cash-Register Model: Arrivals-Only Streams**
 - \(c[x] \) is always \(> 0 \)
 - Typically, \(c[x]=1 \), so we see a multi-set of items in one pass
 - Example: \(<x, 3>, <y, 2>, <x, 2>\) encodes the arrival of 3 copies of item \(x \), 2 copies of \(y \), then 2 copies of \(x \).
 - Could represent, e.g., packets on a network; power usage
Streaming Model: Special Cases

- Turnstile Model: Arrivals and Departures
 - Most general streaming model
 - $c[x]$ can be >0 or <0

- Arrivals and departures:
 - Example: $<x, 3>, <y, 2>, <x, -2>$ encodes final state of $<x, 1>, <y, 2>$.
 - Can represent fluctuating quantities, or measure differences between two distributions

- Problem difficulty varies depending on the model
 - E.g., MIN/MAX in Time-Series vs. Turnstile!
Approximation and Randomization

- Many things are hard to compute exactly over a stream
 - Is the count of all items the same in two different streams?
 - Requires linear space to compute exactly
- Approximation: find an answer correct within some factor
 - Find an answer that is within 10% of correct result
 - More generally, a \((1 \pm \varepsilon)\) factor approximation
- Randomization: allow a small probability of failure
 - Answer is correct, except with probability 1 in 10,000
 - More generally, success probability \((1-\delta)\)
- Approximation and Randomization: \((\varepsilon, \delta)\)-approximations
Probabilistic Guarantees

- User-tunable \((\varepsilon, \delta)\)-approximations
 - Example: Actual answer is within 5 ± 1 with prob \(\geq 0.9 \)

- Randomized algorithms: Answer returned is a specially-built *random variable*
 - *Unbiased* (correct on expectation)
 - Combine several *Independent Identically Distributed* (iid) instantiations (average/median)

- Use *Tail Inequalities* to give probabilistic bounds on returned answer
 - *Markov Inequality*
 - *Chebyshev Inequality*
 - *Chernoff Bound*
 - *Hoeffding Bound*
Basic Tools: Tail Inequalities

- General bounds on *tail probability* of a random variable (that is, probability that a random variable deviates far from its expectation)

- **Basic Inequalities:** Let X be a random variable with expectation μ and variance $\text{Var}[X]$. Then, for any $\varepsilon > 0$

 - **Markov:** $\Pr(X \geq (1+\varepsilon)\mu) \leq \frac{1}{1+\varepsilon}$

 - **Chebyshev:** $\Pr(|X - \mu| \geq \mu\varepsilon) \leq \frac{\text{Var}[X]}{\mu^2 \varepsilon^2}$
Tail Inequalities for Sums

- Possible to derive stronger bounds on tail probabilities for the sum of independent random variables

Hoeffding Bound: Let X_1, \ldots, X_m be independent random variables with $0 \leq X_i \leq r$. Let $\bar{X} = \frac{1}{m} \sum_{i} X_i$ and μ be the expectation of \bar{X}. Then, for any $\varepsilon > 0$,

$$\Pr(|\bar{X} - \mu| \geq \varepsilon) \leq 2\exp\left(-\frac{2m\varepsilon^2}{r^2}\right)$$

Application: Sample average \approx population average
- See below…
Tail Inequalities for Sums

- Possible to derive even stronger bounds on tail probabilities for the sum of independent *Bernoulli trials*

- **Chernoff Bound:** Let X_1, \ldots, X_m be independent Bernoulli trials such that $\Pr[X_i=1] = p$ ($\Pr[X_i=0] = 1-p$). Let $X = \sum_i X_i$ and $\mu = mp$ be the expectation of X. Then, for any $\varepsilon > 0$,

\[
\Pr(|X - \mu| \geq \mu \varepsilon) \leq 2 \exp \left(- \frac{\mu \varepsilon^2}{2} \right)
\]

- **Application:** Sample selectivity \approx population selectivity
 - See below…

- **Remark:** Chernoff bound results in tighter bounds for count queries compared to Hoeffding bound
Data-Stream Algorithmics Model

- **Approximate answers**—e.g. trend analysis, anomaly detection
- **Requirements for stream synopses**
 - *Single Pass*: Each record is examined at most once
 - *Small Space*: Log or polylog in data stream size
 - *Small-time*: Low per-record processing time (maintain synopses)
 - Also: *delete-proof*, *composable*, ...
Sampling & Sketches
Sampling: Basics

- **Idea:** A small random sample S of the data often well-represents all the data
 - For a fast approx answer, apply “modified” query to S
 - **Example:** select agg from R where $R.e$ is odd

Data stream: $9\ 3\ 5\ 2\ 7\ 1\ 6\ 5\ 8\ 4\ 9\ 1$

Sample S: $9\ 5\ 1\ 8$

- If agg is avg, return average of odd elements in S
 - **answer:** 5
- If agg is $count$, return average over all elements e in S of
 - n if e is odd
 - **answer:** $12*3/4 = 9$
 - 0 if e is even

Unbiased Estimator (for count, avg, sum, etc.)
- Bound error using *Hoeffding* (sum, avg) or *Chernoff* (count)
Fundamental problem: sample m items uniformly from stream
- Useful: approximate costly computation on small sample

Challenge: don’t know how long stream is
- So when/how often to sample?

Two solutions, apply to different situations:
- Reservoir sampling (dates from 1980s?)
- Min-wise sampling (dates from 1990s?)
Reservoir Sampling

- Sample first m items
- Choose to sample the i’th item ($i>m$) with probability m/i
- If sampled, randomly replace a previously sampled item

 Optimization: when i gets large, compute which item will be sampled next, skip over intervening items [Vitter’85]
Reservoir Sampling - Analysis

- Analyze simple case: sample size $m = 1$
- Probability i'th item is the sample from stream length n:
 - Prob. i is sampled on arrival \times prob. i survives to end

$$\frac{1}{i} \times \frac{i}{i+1} \times \frac{i+1}{i+2} \ldots \frac{n-2}{n-1} \times \frac{n-1}{n}$$

$$= \frac{1}{n}$$

- Case for $m > 1$ is similar, easy to show uniform probability
- Drawbacks of reservoir sampling: hard to parallelize
Min-wise Sampling

- For each item, pick a random fraction between 0 and 1
- Store item(s) with the smallest random tag [Nath et al.’04]

```
0.391  0.908  0.291  0.555  0.619  0.273
```

- Each item has same chance of least tag, so uniform
- Can run on multiple streams separately, then merge
Sketches

- Not every problem can be solved with sampling
 - Example: counting how many distinct items in the stream
 - If a large fraction of items aren’t sampled, don’t know if they are all same or all different
- Other techniques take advantage that the algorithm can “see” all the data even if it can’t “remember” it all
- “Sketch”: essentially, a linear transform of the input
 - Model stream as defining a vector, sketch is result of multiplying stream vector by an (implicit) matrix

linear projection
Count-Min Sketch [Cormode, Muthukrishnan’04]

- Simple sketch idea, can be used for as the basis of many different stream mining tasks
 - Join aggregates, range queries, moments, ...
- Model input stream as a vector A of dimension N
- Creates a small summary as an array of $w \times d$ in size
- Use d hash functions to map vector entries to $[1..w]$
- Works on arrivals only and arrivals & departures streams

Array: $CM[i,j]$
CM Sketch Structure

- Each entry in input vector $A[]$ is mapped to one bucket per row
 - $h()$’s are pairwise independent
- Merge two sketches by entry-wise summation
- Estimate $A[j]$ by taking $\min_k \{ CM[k, h_k(j)] \}$
CM Sketch Guarantees

- **[Cormode, Muthukrishnan’04]** CM sketch guarantees approximation error on point queries less than $\varepsilon ||A||_1$ in space $O(1/\varepsilon \log 1/\delta)$
 - Probability of more error is less than $1-\delta$
 - Similar guarantees for range queries, quantiles, join size, …

Hints
- Counts are biased (overestimates) due to collisions
 - Limit the expected amount of extra “mass” at each bucket?
- Use independence across rows to boost the confidence for the $\min\{}$ estimate
 - Based on independence of row hashes
CM Sketch Analysis

Estimate \(A'[j] = \min_k \{ CM[k,h_k(j)] \} \)

- Analysis: In \(k \)th row, \(CM[k,h_k(j)] = A[j] + X_{k,j} \)
 - \(X_{k,j} = \sum A[i] \mid h_k(i) = h_k(j) \)
 - \(E[X_{k,j}] = \sum A[i] \cdot Pr[h_k(i)=h_k(j)] \leq (\varepsilon/2) \cdot \sum A[i] = \varepsilon \|A\|_1/2 \) (pairwise independence of \(h \))
 - \(Pr[X_{k,j} \geq \varepsilon \|A\|_1] = Pr[X_{k,j} \geq 2E[X_{k,j}]] \leq 1/2 \) by Markov inequality

- So, \(Pr[A'[j] \geq A[j] + \varepsilon \|A\|_1] = Pr[\forall k. X_{k,j} \geq \varepsilon \|A\|_1] \leq 1/2^{\log 1/\delta} = \delta \)

- Final result: with certainty \(A[j] \leq A'[j] \) and with probability at least \(1-\delta \), \(A'[j] < A[j] + \varepsilon \|A\|_1 \)
Distinct Value Estimation

- **Problem:** Find the *number of distinct values* in a stream of values with domain [1,...,N]
 - Zeroth frequency moment F_0, L0 (Hamming) stream norm
 - Statistics: number of *species or classes* in a population
 - Important for query optimizers
 - *Network monitoring:* distinct destination IP addresses, source/destination pairs, requested URLs, etc.

- **Example (N=64)**
 - Data stream: 3 2 5 3 2 1 7 5 1 2 3 7
 - *Number of distinct values:* 5

- Hard problem for random sampling! [Charikar et al.’00]
 - Must sample almost the entire table to guarantee the estimate is within a factor of 10 with probability > 1/2, regardless of the estimator used!

- AMS and CM only good for *multiset semantics*
FM Sketch [Flajolet, Martin’85]

- Estimates number of distinct inputs (count distinct)
- Uses hash function mapping input items to \(i \) with prob \(2^{-i} \)
 - i.e. \(\Pr[h(x) = 1] = \frac{1}{2} \), \(\Pr[h(x) = 2] = \frac{1}{4} \), \(\Pr[h(x) = 3] = \frac{1}{8} \) …
 - Easy to construct \(h() \) from a uniform hash function by counting trailing zeros
- Maintain FM Sketch = bitmap array of \(L = \log N \) bits
 - Initialize bitmap to all 0s
 - For each incoming value \(x \), set \(FM[h(x)] = 1 \)

\[x = 5 \quad \rightarrow \quad h(x) = 3 \]

\[
\begin{array}{ccccccc}
6 & 5 & 4 & 3 & 2 & 1 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}
\]

FM BITMAP
FM Sketch Analysis

- If \(d \) distinct values, expect \(d/2 \) map to FM[1], \(d/4 \) to FM[2]...

![FM Bitmap Diagram]

- Let \(R \) = position of rightmost zero in FM, indicator of \(\log(d) \)
- Basic estimate \(d = c2^R \) for scaling constant \(c \approx 1.3 \)
- Average many copies (different hash fns) improves accuracy
FM Sketch Properties

- With $O(1/\varepsilon^2 \log 1/\delta)$ copies, get $(1\pm \varepsilon)$ accuracy with probability at least $1-\delta$ [Bar-Yossef et al.’02], [Ganguly et al.’04]
 - 10 copies gets $\approx 30\%$ error, 100 copies $< 10\%$ error

- **Delete-Proof**: Use counters instead of bits in sketch locations
 - +1 for inserts, -1 for deletes

- **Composable**: Component-wise OR/add distributed sketches together

 $|
 \begin{array}{cccccc}
 6 & 5 & 4 & 3 & 2 & 1 \\
 0 & 0 & 1 & 0 & 1 & 1
 \end{array}|
 +
 \begin{array}{cccccc}
 6 & 5 & 4 & 3 & 2 & 1 \\
 0 & 1 & 1 & 0 & 0 & 1
 \end{array}|
 =
 \begin{array}{cccccc}
 6 & 5 & 4 & 3 & 2 & 1 \\
 0 & 1 & 1 & 0 & 1 & 1
 \end{array}$

- Estimate $|S_1 \cup \cdots \cup S_k| = \text{set union cardinality}$
Sampling and sketching ideas are at the heart of many stream mining algorithms
- Moments/join aggregates, histograms, wavelets, top-k, frequent items, other mining problems, ...

A sample is a quite general representative of the data set; sketches tend to be specific to a particular purpose
- FM sketch for count distinct, CM/AMS sketch for joins / moment estimation, ...

Traditional sampling does not work in the turnstile (arrivals & departures) model
- BUT… see recent generalizations of distinct sampling
 [Ganguly et al.’04], [Cormode et al.’05]; as well as [Gemulla et al.’08]
Practicality

- Algorithms discussed here are quite simple and very fast
 - Sketches can easily process millions of updates per second on standard hardware
 - Limiting factor in practice is often I/O related

- Implemented in several practical systems:
 - AT&T’s Gigascope system on live network streams
 - Sprint’s CMON system on live streams
 - Google’s log analysis

- Sample implementations available on the web
 - or web search for ‘massdal’
Conclusions

- **Data Streaming**: Major departure from traditional persistent database paradigm
 - Fundamental re-thinking of models, assumptions, algorithms, system architectures, …
- Many new streaming problems posed by developing technologies
- Simple tools from **approximation and/or randomization** play a critical role in effective solutions
 - Sampling, sketches (CM, FM, …), …
 - Simple, yet powerful, ideas with **great reach**
 - Can often “mix & match” for specific scenarios
References (1)

[Aduri, Tirthapura '05] P. Aduri and S. Tirthapura. Range-efficient Counting of F_0 over Massive Data Streams. In IEEE International Conference on Data Engineering, 2005

References (2)

References (3)

[Jain, Fall, Patra ’05] S. Jain, K. Fall, R. Patra, Routing in a Delay Tolerant Network, In IEEE Infocom, 2005

References (4)

References (5)

[Sharfman et al.’06] Izchak Sharfman, Assaf Schuster, Daniel Keren: A geometric approach to monitoring threshold functions over distributed data streams. SIGMOD Conference 2006: 301-312
