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Streams – A Brave New World
 Traditional DBMS: data stored in finite, persistent data sets 

 Data Streams: distributed, continuous, unbounded, rapid, 
time varying, noisy, . . . 

 Data-Stream Management: variety of modern applications
– Network monitoring and traffic engineering
– Sensor networks
– Telecom call-detail records
– Network security 
– Financial applications
– Manufacturing processes
– Web logs and clickstreams
– Other massive data sets…
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 Data is continuously growing faster than our ability 
to store or index it

 There are 3 Billion Telephone Calls in US each day, 
30 Billion emails daily, 1 Billion SMS, IMs 

 Scientific data: NASA's observation satellites 
generate billions of readings each per day

 IP Network Traffic: up to 1 Billion packets per hour 
per router.  Each ISP has many (hundreds) routers!

 Whole genome sequences for many species now 
available: each megabytes to gigabytes in size

Massive Data Streams
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Massive Data Stream Analysis

Must analyze this massive data:
 Scientific research (monitor environment, species)
 System management (spot faults, drops, failures)
 Business intelligence (marketing rules, new offers) 
 For revenue protection (phone fraud, service abuse)

Else, why even measure this data?



A Quick Intro to Data Stream Algorithmics – CS262  
5 

Example: IP Network Data

 Networks are sources of massive data: the metadata per 
hour per IP router is gigabytes

 Fundamental problem of data stream analysis: 
Too much information to store or transmit

 So process data as it arrives –  One pass, small space: 
the data stream approach

 Approximate answers  to many questions are OK, if 
there are guarantees of result quality
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IP Network Monitoring Application

 24x7 IP packet/flow data-streams at network elements
 Truly massive streams arriving at rapid rates

– AT&T/Sprint collect  ~1 Terabyte of NetFlow data each day

 Often shipped off-site to data warehouse for off-line analysis

    Source        Destination     Duration        Bytes       Protocol
   10.1.0.2            16.2.3.7             12                20K            http
   18.6.7.1            12.4.0.3             16                24K            http
   13.9.4.3            11.6.8.2             15                20K            http
   15.2.2.9            17.1.2.1             19                40K            http
   12.4.3.8            14.8.7.4             26                58K            http
   10.5.1.3            13.0.0.1             27                100K          ftp
   11.1.0.6            10.3.4.5             32                300K          ftp
   19.7.1.2            16.5.5.8             18                80K            ftp

Example NetFlow 
IP Session Data

DSL/Cable
Networks

• Broadband
  Internet Access

Converged IP/MPLS
Core

PSTNEnterprise
Networks

• Voice over IP• FR, ATM, IP VPN

Network Operations
Center  (NOC)

SNMP/RMON,
NetFlow records

Peer
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Packet-Level Data Streams

Single 2Gb/sec link;  say avg packet size is 50bytes
 Number of packets/sec = 5 million
Time per packet = 0.2 microsec
 If we only capture header information per packet: src/dest IP, 

time, no. of bytes, etc. – at least 10bytes.
– Space per second is 50Mb

– Space per day is 4.5Tb per link

– ISPs typically have hundreds of links!

 Analyzing packet content streams – whole different 
ballgame!!
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Network Monitoring Queries

DBMS
(Oracle, DB2)

Back-end Data Warehouse

Off-line analysis – 
slow, expensive

DSL/Cable
Networks

Enterprise
Networks

Peer 

Network Operations
Center  (NOC)

What are the top (most frequent) 1000 (source, 
dest) pairs seen over the last month?

SELECT COUNT (R1.source, R2.dest)
FROM  R1, R2
WHERE R1.dest = R2.source

SQL Join Query

How many distinct (source, dest) pairs have 
been seen by both R1 and R2 but not R3?

Set-Expression Query

PSTN

 Extra complexity comes from limited space and time
 Solutions exist for these and other problems

R1

R2

R3
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Real-Time Data-Stream Analysis

 Must process network streams in real-time and one pass
 Critical NM tasks: fraud, DoS attacks, SLA violations

– Real-time traffic engineering to improve utilization
 Tradeoff  result accuracy  vs.  space/time/communication 

– Fast responses, small space/time
– Minimize use of communication resources

IP Network

PSTN

DSL/Cable
Networks

Network Operations
Center  (NOC)

BGP
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Sensor Networks

 Wireless sensor networks becoming ubiquitous in 
environmental monitoring, military applications, …

 Many (100s, 103, 106?) sensors scattered over terrain 
 Sensors observe and process a local stream of readings: 

– Measure light, temperature, pressure…
– Detect signals, movement, radiation…
– Record audio, images, motion…
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Sensornet Querying Application

 Query sensornet through a (remote) base station
 Sensor nodes have severe resource constraints

– Limited battery power, memory, processor, radio range…
– Communication is the major source of battery drain
– “transmitting a single bit of data is equivalent to 800 

instructions”       [Madden et al.’02]

base station
(root, coordinator…)
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Lecture Outline
 Motivation & Streaming Applications

 Centralized Stream Processing

– Basic streaming models and tools

– Stream synopses and applications

Sampling, sketches

 Conclusions
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Data Streaming Model
 Underlying signal: One-dimensional array A[1…N] with 

values A[i]  all initially zero
– Multi-dimensional arrays as well (e.g., row-major)

 Signal is implicitly represented via a stream of update tuplesstream of update tuples
– j-th update is  <x, c[j]> implying

  A[x] := A[x] + c[j]     (c[j]  can be >0, <0)

Goal:  Compute functions on A[]  subject to 
– Small space
– Fast processing of updates
– Fast function computation
– …

 Complexity arises from massive length and domain           
size (N)  of streams
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Example IP Network Signals

 Number of bytes (packets) sent by a source IP address 
during the day
– 2^(32) sized one-d array;  increment only

 Number of flows between a source-IP, destination-IP 
address pair during the day
– 2^(64) sized two-d array; increment only,  aggregate 

packets into flows

 Number of active flows per source-IP address
– 2^(32) sized one-d array;  increment and decrement
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Streaming Model: Special Cases

 Time-Series Model
– Only x-th update  updates A[x]  (i.e., A[x] := c[x])

 Cash-Register Model:  Arrivals-Only Streams
–  c[x] is always > 0  
– Typically, c[x]=1,  so we see a multi-set of items in one pass

– Example: <x, 3>, <y, 2>, <x, 2> encodes
the arrival of 3 copies of item x, 
2 copies of y, then 2 copies of x.

– Could represent, e.g., packets on a network; power usage

x
y
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Streaming Model: Special Cases
 Turnstile Model: Arrivals and Departures

– Most general streaming model
–  c[x]  can be >0 or <0 

 Arrivals and departures:
– Example: <x, 3>, <y,2>, <x, -2> encodes

 final state of  <x, 1>, <y, 2>.
–  Can represent fluctuating quantities, or measure 

differences between two distributions

x
y

 Problem difficulty varies depending on the model
– E.g., MIN/MAX in Time-Series  vs.  Turnstile!



A Quick Intro to Data Stream Algorithmics – CS262  
17 

Approximation and Randomization

 Many things are hard to compute exactly over a stream
– Is the count of all items the same in two different streams?
– Requires linear space to compute exactly

 Approximation: find an answer correct within some factor
– Find an answer that is within 10% of correct result
– More generally, a (1± ε) factor approximation

 Randomization: allow a small probability of failure
– Answer is correct, except with probability 1 in 10,000
– More generally, success probability (1-δ)

 Approximation Approximation andand Randomization Randomization: (ε, δ)-approximations
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Probabilistic Guarantees 
 User-tunable  (ε,δ)-approximations

– Example: Actual answer is within 5 ± 1  with prob ≥ 0.9
 Randomized algorithms:  Answer returned is a specially-

built random variablerandom variable 
– Unbiased (correct on expectation) 
– Combine several  Independent Identically Distributed (iid) 

instantiations (average/median)
 Use Tail Inequalities to give probabilistic bounds on 

returned answer
– Markov Inequality
– Chebyshev Inequality
– Chernoff Bound
– Hoeffding Bound
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Basic Tools: Tail Inequalities 
 General bounds on tail probability of a random variable 

(that is, probability that a random variable deviates far 
from its expectation)

 Basic Inequalities: Let X be a random variable with 
expectation       and variance Var[X]. Then, for any 

µε µ µε

Probability
distribution

Tail probability

0>εµ

Markov: Chebyshev:
22εμ

Var[X]
με)|μXPr(| ≤≥−

ε1

1
ε)μ)(1Pr(X

+
≤+≥
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Tail Inequalities for Sums 
 Possible to derive stronger bounds on tail probabilities for 

the sum of independent random variables

 Hoeffding Bound:  Let X1, ..., Xm be independent random 

variables with 0· Xi · r. Let                      and      be the 

expectation of    . Then, for any         ,

 Application:   Sample average ¼  population average 
– See below…

2

2

r

2mε

2expε)|μXPr(|
−

≤≥−

0>ε
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i iXm
X
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X
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Tail Inequalities for Sums
 Possible to derive even stronger bounds on tail probabilities 

for the sum of independent Bernoulli trials

 Chernoff Bound:  Let X1, ..., Xm be independent Bernoulli 

trials such that Pr[Xi=1] = p (Pr[Xi=0] = 1-p). Let                  

and               be the expectation of     . Then, for any         ,

 Application:  Sample selectivity ¼ population selectivity
– See below…

 Remark:  Chernoff bound results in tighter bounds for count 
queries compared to Hoeffding bound

2
με2

2expμε)|μXPr(|
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≤≥−

0>ε
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i iXX
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Data-Stream Algorithmics Model

 Approximate answers– e.g. trend analysis, anomaly detection
 Requirements for stream synopses

– Single Pass:  Each record is examined at most once
– Small Space:  Log or polylog in data stream size
– Small-time: Low per-record processing time (maintain synopses)
– Also:  delete-proof, composable, …

 Stream Processor

Approximate Answer
with Error Guarantees
“Within 2% of exact
answer with high
probability”

Stream Synopses
  (in memory)

Continuous Data Streams

Query Q

R1

Rk

(Terabytes) (Kilobytes)



Sampling & Sketches 
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Sampling: Basics
 Idea:  A small random sample S of the data often well-

represents all the data
– For a fast approx answer, apply “modified” query to S
– Example: select agg from R where R.e is odd

                                                                                          
(n=12)
                                             

– If agg is avg, return average of odd elements in S 
– If agg is count, return average over all elements e in S of

 n if e is odd
 0 if e is even

 Unbiased EstimatorUnbiased Estimator (for count, avg, sum, etc.)
– Bound error using Hoeffding (sum, avg) or Chernoff (count) 

Data stream:  9   3   5   2   7   1   6   5   8   4   9   1

Sample S:  9   5   1   8

answer: 5

answer: 12*3/4 =9
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Sampling from a Data Stream

 Fundamental problem: sample m items uniformly from 
stream
– Useful: approximate costly computation on small sample

 Challenge: don’t know how long stream is  
– So when/how often to sample?

 Two solutions, apply to different situations:
– Reservoir sampling (dates from 1980s?)
– Min-wise sampling (dates from 1990s?)
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Reservoir Sampling

 Sample first m items
 Choose to sample the i’th item (i>m) with probability m/i
 If sampled, randomly replace a previously sampled item

 Optimization: when i gets large, compute which item will 
be sampled next, skip over intervening items [Vitter’85]
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Reservoir Sampling - Analysis

 Analyze simple case: sample size m = 1
 Probability i’th item is the sample from stream length n:

– Prob. i is sampled on arrival × prob. i survives to end

 1   i  i+1 n-2 n-1
  i i+1 i+2 n-1  n

×   ×  … ×

= 1/n

 Case for m > 1 is similar, easy to show uniform probability
 Drawbacks of reservoir sampling: hard to parallelize
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Min-wise Sampling

 For each item, pick a random fraction between 0 and 1
 Store item(s) with the smallest random tag [Nath et 

al.’04]

0.391 0.908 0.291 0.555 0.619 0.273

 Each item has same chance of least tag, so uniform
 Can run on multiple streams separately, then merge
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Sketches

 Not every problem can be solved with sampling
– Example: counting how many distinct items in the stream
– If a large fraction of items aren’t sampled, don’t know if 

they are all same or all different
 Other techniques take advantage that the algorithm can 

“see” all the data even if it can’t “remember” it all 
 ““Sketch”:Sketch”:  essentially,  a linear transform of the input

– Model stream as defining a vector, sketch is result of 
multiplying stream vector by an (implicit) matrix

linear projection
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Count-Min Sketch [Cormode, Muthukrishnan’04]

 Simple sketch idea, can be used for as the basis of many 
different stream mining tasks
– Join aggregates, range queries, moments, …

 Model input stream as a vector A of dimension N
 Creates a small summary as an array of w × d in size
 Use d hash functions to map vector entries to [1..w]
 Works on arrivals only and arrivals & departures streams

W

dArray: 
CM[i,j]
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CM Sketch Structure

 Each entry in input vector A[] is mapped to one bucket 
per row 
– h()’s are pairwise independent

 Merge two sketches by entry-wise summation
 Estimate A[j] by taking mink { CM[k,hk(j)] }

+c

+c

+c

+c

h1(j)

hd(j)

<j, +c>

d=
log 1/δ

w = 2/ε
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CM Sketch Guarantees
 [Cormode, Muthukrishnan’04]   CM sketch guarantees 

approximation error on point queries less than ε||A||1 in space 
O(1/ε log 1/δ)
– Probability of more error is less than 1-δ
– Similar guarantees for range queries, quantiles, join size,…

 Hints
– Counts are biased (overestimates) due to collisions

   Limit the expected amount of extra “mass” at each 
bucket?  

– Use independence across rows to boost the confidence for 
the min{} estimate
 Based on independence of row hashes
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CM Sketch Analysis

Estimate A’[j] = mink { CM[k,hk(j)] }

 Analysis: In k'th row, CM[k,hk(j)] = A[j] + Xk,j

– Xk,j = Σ A[i] | hk(i) = hk(j)

– E[Xk,j] = Σ A[i]*Pr[hk(i)=hk(j)] 

≤ (ε/2) * Σ A[i] = ε ||A||1/2  (pairwise independence of h)

– Pr[Xk,j ≥ ε||A||1] = Pr[Xk,j ≥ 2E[Xk,j]] ≤ 1/2   by Markov inequality 

 So,  Pr[A’[j]≥ A[j] + ε ||A||1] = Pr[∀ k. Xk,j>ε ||A||1] ≤1/2log 1/δ
 = δ 

 Final result: with certainty A[j] ≤ A’[j] and 

with probability at least 1-δ,  A’[j]< A[j] + ε ||A||1



A Quick Intro to Data Stream Algorithmics – CS262  
34 

Distinct Value Estimation
 Problem: Find the number of distinct values in a stream of 

values with domain [1,...,N]
– Zeroth frequency moment       ,   L0 (Hamming)  stream norm
– Statistics:  number of species or classes  in a population
– Important for query optimizers
– Network monitoring:  distinct destination IP addresses, 

source/destination pairs,  requested URLs, etc.

 Example (N=64)

 Hard problem for random sampling! [Charikar et al.’00]
– Must sample almost the entire table to guarantee the estimate is 

within a factor of 10 with  probability > 1/2, regardless of the 
estimator used!

 AMS and CM only good for multiset semanticsmultiset semantics

Data stream:  3   2   5   3   2   1   7   5   1   2   3   7

Number of distinct values:  5

0F
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0

FM Sketch  [Flajolet, Martin’85]

 Estimates number of distinct inputs (count distinct)
 Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …
– Easy to construct h() from a uniform hash function by 

counting trailing zeros  
 Maintain FM Sketch =  bitmap array of L = log N  bits 

– Initialize bitmap to all 0s
– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6      5     4     3     2      1
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FM Sketch Analysis

 If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]… 

– Let R = position of rightmost zero in FM, indicator of log(d)
– Basic estimate d = c2R for scaling constant c ≈ 1.3
– Average many copies (different hash fns) improves accuracy

fringe of 0/1s 
around  log(d)

0 0 0 00 1

FM BITMAP

0 00 111 1 11111

position ≪ log(d)position ≫ log(d)

1L R
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FM Sketch Properties
 With O(1/ε2 log 1/δ) copies, get (1±ε) accuracy with 

probability at least 1-δ   [Bar-Yossef et al’02], [Ganguly et al.’04]

– 10 copies gets ≈ 30% error, 100 copies < 10% error

 Delete-Proof:  Use counters instead of bits in sketch locations

– +1 for inserts,  -1 for deletes
 Composable: Component-wise OR/add distributed sketches  

together

– Estimate   |S1 [[ Sk| = set union cardinality

00 0 1 11

6    5    4    3    2     1

00 1 1 10

6    5    4    3    2     1

00 1 1 11

6    5    4    3    2     1

+ =



A Quick Intro to Data Stream Algorithmics – CS262  
38 

Sketching and Sampling Summary

 Sampling and sketching ideas are at the heart of many 
stream mining algorithms
– Moments/join aggregates, histograms, wavelets, top-k, 

frequent items, other mining problems, …
 A sample is a quite general representative of the data set; 

sketches tend to be specific to a particular purpose
– FM sketch for count distinct, CM/AMS sketch for joins / 

moment estimation, …
 Traditional sampling does not work in the turnstile (arrivals 

& departures) model
– BUT… see recent generalizations of distinct sampling 

[Ganguly et al.’04], [Cormode et al.’05];   as well as [Gemulla 
et al.’08]
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Practicality

 Algorithms discussed here are quite simple and very fast
– Sketches can easily process millions of updates per second 

on standard hardware
– Limiting factor in practice is often I/O related

 Implemented in several practical systems:
– AT&T’s Gigascope system on live network streams
– Sprint’s CMON system on live streams
– Google’s log analysis

 Sample implementations available on the web
– http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

– or web search for ‘massdal’
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Conclusions
 Data Streaming:   Major departure from traditional 

persistent database paradigm
– Fundamental re-thinking of models, assumptions, algorithms, 

system architectures, …

 Many new streaming problems posed by developing 
technologies

 Simple tools from approximation and/or randomization play 
a critical role in effective solutions
– Sampling,  sketches (CM, FM, …), …

– Simple, yet powerful, ideas with great reach

– Can often “mix & match” for specific scenarios
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