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Streams - A Brave New World

® Traditional DBMS: data stored in finite, persistent data sets

B Data Streams: distributed, continuous, unbounded, rapid,
time varying, noisy, . ..

B Data-Stream Management: variety of modern applications

— Network monitoring and traffic engineering
— Sensor networks

— Telecom call-detail records

— Network security

— Financial applications

— Manufacturing processes

— Web logs and clickstreams

— Other massive data sets...
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Massive Data Streams

Data is continuously growing faster than our ability
to store or index it

There are 3 Billion Telephone Calls in US each day,
30 Billion emails daily, 1 Billion SMS, IMs /
)
®
\

Scientific data: NASA's observation satellites \@{

generate billions of readings each per day

IP Network Traffic: up to 1 Billion packets per hour
per router. Each ISP has many (hundreds) routers!

Whole genome sequences for many species now S/
available: each megabytes to gigabytes in size =
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Massive Data Stream Analysis

Must analyze this massive data:

B Scientific research (monitor environment, species)

B System management (spot faults, drops, failures)

B Business intelligence (marketing rules, new offers)
® For revenue protection (phone fraud, service abuse)
Else, why even measure this data?

4 YaHoO!

A Quick Intro to Data Stream Algorithmics — CS262 RESEARCH



I
Example: IP Network Data

® Networks are sources of massive data: the metadata per
hour per IP router is gigabytes

® Fundamental problem of data stream analysis:
Too much information to store or transmit

B So process data as it arrives — One pass, small space:
the data stream approach

B Approximate answers to many questions are OK|, if
there are guarantees of result quality
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IP Network Monitoring Application

Source Destination [ Duration Bytes Protocol
10.1.0.2 16.2.3.7 12 20K http
Network Operations 18.6.7.1 12.4.0.3 16 24K http
SNMP/RMON, Center ?NOC) 13.9.4.3 11.6.8.2 15 20K http
NetFlow records . > 15.2.2.9 17.1.2.1 19 40K http
12.4.3.8 14.8.7.4 26 58K http
10.5.1.3 13.0.0.1 27 100K ftp
11.1.0.6 10.3.4.5 32 300K ftp
19.7.1.2 16.5.5.8 18 80K ftp

Example NetFlow
IP Session Data

7/ Converged IPIMPLS =
" Core
€Z»
o N
Networks

*FR, ATM, IP VPN DSL/Cable ° Broadband
Networks Internet Access

B 24x7 |IP packet/flow data-streams at network elements

® Truly massive streams arriving at rapid rates
- AT&T/Sprint collect ~71 Terabyte of NetFlow data each day

B Often shipped off-site to data warehouse for off-line analysis

psTN —E

* \/oice over IP
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Packet-Level Data Streams

BSingle 2Gb/sec link; say avg packet size is 50bytes
® Number of packets/sec = 5 million
®Time per packet = 0.2 microsec

B |[f we only capture header information per packet: src/dest IP,
time, no. of bytes, etc. — at least 10bytes.

—Space per second is 50Mb
—Space per day is 4.5Tb per link
—1SPs typically have hundreds of links!

® Analyzing packet content streams — whole different
ballgame!!
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Network Monitoring Queries

Back-end Data Wareh e

DBMS
(Oracle, DB2)

What are the top (most frequent) 1000 (source,
dest) pairs seen over the last month?

Off-line analysis —
slow, expensive

Network Operations
Center (NOC)

How many distinct (source, dest) pairs have
been seen by both R1 and R2 but not R3?

Set-Expression Query

SELECT COUNT (R1.source, R2.dest)
FROM R1, R2
WHERE R1.dest = R2.source

Enterprise PSTN )
Networks DSL/Cable SQL Join Query

Networks

B Extra complexity comes from limited space and time

B Solutions exist for these and other problems
8 YaHoO!
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Real-Time Data-Stream Analysis

Network Operations
Center (NOC)

DSL/Cable

Networks PSTN

® Must process network streams in real-time and one pass
® Critical NM tasks: fraud, DoS attacks, SLA violations
— Real-time traffic engineering to improve utilization
B Tradeoff result accuracy vs. space/time/communication
— Fast responses, small space/time
— Minimize use of communication resources

9 YaHoO!
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Sensor Networks

® Wireless sensor networks becoming ubiquitous in
environmental monitoring, military applications, ...

® Many (100s, 103, 10%?) sensors scattered over terrain

® Sensors observe and process a local stream of readings:
— Measure light, temperature, pressure...
— Detect signals, movement, radiation...
— Record audio, images, motion...

10 YaHoO!
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Sensornet Querying Application

B Query sensornet through a (remote) base station

B Sensor nodes have severe resource constraints
— Limited battery power, memory, processor, radio range...
— Communication is the major source of battery drain

— “transmitting a single bit of data is equivalent to 800
instructions” [Madden et al.’02]

E -
q 4 » 8 i
s 8 T

base station

(root, coordinator...) ﬁ s
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Lecture Outline

B Motivation & Streaming Applications
B Centralized Stream Processing
— Basic streaming models and tools
- Stream synopses and applications
® Sampling, sketches

® Conclusions

12 I
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Data Streaming Model

® Underlying signal: One-dimensional array A[1...N] with
values A[i] all initially zero
—Multi-dimensional arrays as well (e.g., row-major)
B Signal is implicitly represented via a stream of update tuples
—j-th update is <x, c[j]> implying
" Alx] .= A[x] +c[j] (c[j] can be >0, <0)

BGoal: Compute functions on A[] subject to
-Small space
—Fast processing of updates
—Fast function computation

B Complexity arises from massive length and domain
size (N) of streams

13 YaHoO!

A Quick Intro to Data Stream Algorithmics — CS262 RESEARCH



I
Example IP Network Signals

® Number of bytes (packets) sent by a source |IP address
during the day

—-2M(32) sized one-d array; increment only

® Number of flows between a source-IP, destination-IP
address pair during the day

—-2"(64) sized two-d array; increment only, aggregate
packets into flows

® Number of active flows per source-IP address
—-2"(32) sized one-d array; increment and decrement

14 YaHOO!
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Streaming Model: Special Cases

B Time-Series Model
—Only x-th update updates A[x] (i.e., A[X] := c[X])

B Cash-Register Model: Arrivals-Only Streams
- ¢[x] is always > 0
—Typically, c[x]=1, so we see a multi-set of items in one pass

- Example: <x, 3>, <y, 2>, <x, 2> encodes CYYIrr
the arrival of 3 copies of item x, y o0
2 copies of y, then 2 copies of x.

— Could represent, e.g., packets on a network; power usage

15 YaHoO!
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Streaming Model: Special Cases

® Turnstile Model: Arrivals and Departures
—Most general streaming model
— ¢[x] can be >0 or <0

® Arrivals and departures:

- Example: <x, 3>, <y,2> <x,-2>encodes x Q@@
final state of <x, 1>, <y, 2>. vy @@

— Can represent fluctuating quantities, or measure
differences between two distributions

® Problem difficulty varies depending on the model
-E.g., MIN/MAX in Time-Series vs. Turnstile!

16 YaHoO!
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Approximation and Randomization

® Many things are hard to compute exactly over a stream
— |Is the count of all items the same in two different streams?
— Requires linear space to compute exactly

B Approximation: find an answer correct within some factor
- Find an answer that is within 10% of correct result
— More generally, a (1x €) factor approximation

B Randomization: allow a small probability of failure
— Answer is correct, except with probability 1 in 10,000
— More generally, success probability (1-9)

" Approximation and Randomization: (€, d)-approximations

17 YaHoO!
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Probabilistic Guarantees

B User-tunable (g d)-approximations
— Example: Actual answer is within 5 £ 1 with prob = 0.9

B Randomized algorithms: Answer returned is a specially-
built random variable
— Unbiased (correct on expectation)

— Combine several Independent Identically Distributed (iid)
instantiations (average/median)

B Use Tail Inequalities to give probabilistic bounds on
returned answer

— Markov Inequality
— Chebyshev Inequality
— Chernoff Bound

- Hoeffding Bound
18 YaHoO!
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Basic Tools: Tail Inequalities

® General bounds on tail probability of a random variable
(that is, probability that a random variable deviates far
from its expectation)

Probability
distribution

Tail probability

HE #H# Hg

B Basic Inequalities: Let X be a random variable with
expectation U and variance Var[X]. Then, forany ¢ >

Markov: 1 Chebyshev:

Pr(X2(1+£)p)s1T Pr(| X-p [z pe) <
£

19 YaHoO!
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Tall Inequalities for Sums

® Possible to derive stronger bounds on tail probabilities for
the sum of independent random variables

B Hoeffding Bound: Let X1, ..., Xm tie iIndependent random
variables with 0< Xi <r.Let X=—3% X, and H be the

expectation of X. Then, for any £>0,
—2me?

Pr(| X-plz€e)s2exp ©

B Application: Sample average ~ population average
- See below...

20 YaHOO!
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Tall Inequalities for Sums

21

Possible to derive even stronger bounds on tail probabilities
for the sum of independent Bernoulli trials

Chernoff Bound: Let X1, ..., Xm be independent Bernoulli
trials such that Pr[Xi=1] = p (Pr[Xi=0] = 1-p). Let X = ZZXZ.
and U =mp be the expectation of X . Then, forany € >0,

g2

Pr(| X—u[=pe)<2exp 2

Application: Sample selectivity ~ population selectivity

- See below...

Remark: Chernoff bound results in tighter bounds for count
queries compared to Hoeffding bound

YaHoO!
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Data-Stream Algorithmics Model

’_——~~

/ Stream Synopses \
(in memory) » (Kilobytes)

(Terabytes) \
Continuous Data Streams T =
R, ! - Approximate Answer
o Stream Processor — With Error Guarantees
| “‘Within 2% of exact
R | T answer with high
K Query Q probability”

B Approximate answers— e.g. trend analysis, anomaly detection

B Requirements for stream synopses
— Single Pass: Each record is examined at most once
- Small Space: Log or polylog in data stream size
- Small-time: Low per-record processing time (maintain synopses)
— Also: delete-proof, composable, ...
22 YaHoO!
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I
Sampling: Basics

B |dea: A small random sample S of the data often well-
represents all the data
— For a fast approx answer, apply “modified” query to S
— Example: select agg from R where R.e is odd

(n=12) Datastream:|9 3 5 2 7 1 6 5 8 4 9 1

Sample S;|9 5 1 8

— If agg is avg, return average of odd elements in S

— If agg is count, return average over all elements e in S of
" nifeisodd
" Qifeiseven

B Unbiased Estimator (for count, avg, sum, etc.)

— Bound error using Hoeffding (sum, avg) or Chernoff (count)
24 YaHoO!
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Sampling from a Data Stream

000000000000000000000000000 006
000000000000000000 00
00000000 > O
00000000000000000 PP

® Fundamental problem: sample m items uniformly from

stream

— Useful: approximate costly computation on small sample
® Challenge: don’t know how long stream is

- So when/how often to sample?
® Two solutions, apply to different situations:

— Reservoir sampling (dates from 1980s?)

- Min-wise sampling (dates from 1990s7?)

25 I
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Reservoir Sampling

e
o ®

B Sample first m items
B Choose to sample the i'th item (i>m) with probability m/i
B |f sampled, randomly replace a previously sampled item

B Optimization: when i gets large, compute which item will
be sampled next, skip over intervening items [Vitter'85]

26 I
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Reservoir Sampling - Analysis

B Analyze simple case: sample size m = 1

® Probability i'th item is the sample from stream length n:
— Prob. i is sampled on arrival x prob. i survives to end

1 A& i1 p2 pda
A 1 2 p<l n
=1/n

B Case for m > 1 is similar, easy to show uniform probability
® Drawbacks of reservoir sampling: hard to parallelize

27 YaHoO!
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Min-wise Sampling

® For each item, pick a random fraction between 0 and 1

B Store item(s) with the smallest random tag [Nath et
al.’04]

@ o6 & e o O

0.391 0.908 0.291 0.555 0.619 0.273

L

® Fach item has same chance of least tag, so uniform
® Can run on multiple streams separately, then merge

28 YaHoO!
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Sketches

® Not every problem can be solved with sampling
— Example: counting how many distinct items in the stream

— If a large fraction of items aren’t sampled, don’t know if
they are all same or all different

® Other techniques take advantage that the algorithm can
“see” all the data even if it can’t “remember” it all

B “Sketch”: essentially, a linear transform of the input

- Model stream as defining a vector, sketch is result of
multiplying stream vector by an (implicit) matrix

linear projection

29 YaHoO!
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Count-Min Sketch [Cormode, Muthukrishnan’04]

B Simple sketch idea, can be used for as the basis of many
different stream mining tasks

— Join aggregates, range queries, moments, ...

Model input stream as a vector A of dimension N
Creates a small summary as an array of w x d in size
Use d hash functions to map vector entries to [1..w]
Works on arrivals only and arrivals & departures streams

Array: d
CM[ij]

30 I
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CM Sketch Structure

tC
h,(0) -
] .
<j, +c> — e
\.\
T
) || T
a\l -
\\;I'C
w = 2/

® Merge two sketches by entry-wise summation
m Estimate A[j] by taking min, { CM[Kk,h,(j)] }

31

P

Q/| bo

Each entry in input vector A[] is mapped to one bucket

per row
- h()’s are pairwise independent

A Quick Intro to Data Stream Algorithmics — CS262
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CM Sketch Guarantees

B [Cormode, Muthukrishnan’04] CM sketch guarantees
approximation error on point queries less than €||A||, in space

O(1/e log 1/d)
— Probability of more error is less than 1-0
— Similar guarantees for range queries, quantiles, join size,...

® Hints
— Counts are biased (overestimates) due to collisions

" |Limit the expected amount of extra “mass” at each
bucket?

— Use independence across rows to boost the confidence for
the min{} estimate

" Based on independence of row hashes
32 YaHoO!
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CM Sketch Analysis

Estimate A’[j] = min, { CM[k,h,(j)] }

® Analysis: In k'th row, CM[k,h,(j)] = A[]] + X,
- X;= 2 Ali] | h(i) = h()

- EIXl =2 AliI"Pr[h(i)=h()]
< (e/2) * Z Ali] = € ||A]|,/2 (pairwise independence of h)

- PriX,; = €||Al[;] = Pr{X ;= 2E[X, ]] < 1/2 by Markov inequality
m So, PriA[]= Al + € ||A]l,] = Pr[U k. Xk,j>e [|Al[,] £1/2les Vo= 3

® Final result: with certainty A[j] < A'[j] and
with probability at least 1-0, A'[j]< A[j] + € ||A|,

33 YAaHoO!
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Distinct Value Estimation

B Problem: Find the number of distinct values in a stream of
values with domain [1,...,N]

— Zeroth frequency moment Fo , LO (Hamming) stream norm
— Statistics: number of species or classes in a population
— Important for query optimizers

— Network monitoring: distinct destination IP addresses,
source/destination pairs, requested URLs, etc.

" Example (N=64) potostream[3 2 5 3 2 1 7 5 1 2 3 7

Number of distinct values: 5

® Hard problem for random sampling! [Charikar et al.’00]

— Must sample almost the entire table to guarantee the estimate is
within a factor of 10 with probability > 1/2, regardless of the
estimator used!

® AMS and CM only good for multiset semantics
34 YaHoO!
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FM Sketch [Flajolet, Martin’85]

B Estimates number of distinct inputs (count distinct)
B Uses hash function mapping input items to i with prob 2-
- i.e. Pr[h(x) = 1] = V2, Pr[h(x) = 2] = %4, Pr[h(x)=3] = 1/8 ...
— Easy to construct h() from a uniform hash function by
counting trailing zeros

® Maintain FM Sketch = bitmap array of L = log N bits
— Initialize bitmap to all Os

— For each incoming value x, set FM[h(x)] = 1
6 5 4 3 2 1
x=5 =—> h(x)=3 0O(0]J]0 11010

MBITMAP

35 YaHoO!
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FM Sketch Analysis

B |f d distinct values, expect d/2 map to FM[1], d/4 to FMI[2]...

. R FM BITMAP ,
ololo]o 11010} 1 11111 1] 1
. / l _/

"2l A

36

position > log(d)

fringe of 0/1s
around log(d)

position < log(d)

- Let R = position of rightmost zero in FM, indicator of log(d)

— Basic estimate d = c2R for scaling constant c = 1.3

— Average many copies (different hash fns) improves accuracy

A Quick Intro to Data Stream Algorithmics — CS262
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FM Sketch Properties

B With O(1/e? log 1/0) copies, get (1x€) accuracy with
probability at least 1-0 [Bar-Yossef et al'02], [Ganguly et al.’04]

— 10 copies gets = 30% error, 100 copies < 10% error

B Delete-Proof: Use counters instead of bits in sketch locations
- +1 for inserts, -1 for deletes

® Composable: Component-wise OR/add distributed sketches

together
6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1

olol1lol1l1| + |0o[1]l1]10|0] 1 ol111|0]|1]1

- Estimate |S, U---U S,| = set union cardinality

37 YAaHoO!
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Sketching and Sampling Summary

B Sampling and sketching ideas are at the heart of many
stream mining algorithms

- Moments/join aggregates, histograms, wavelets, top-Kk,
frequent items, other mining problems, ...

B A sample is a quite general representative of the data set;
sketches tend to be specific to a particular purpose
- FM sketch for count distinct, CM/AMS sketch for joins /
moment estimation, ...
® Traditional sampling does not work in the turnstile (arrivals
& departures) model
- BUT... see recent generalizations of distinct sampling

[Ganguly et al.’04], [Cormode et al.’05]; as well as [Gemulla
et al.’08]

38 YAaHoO!
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Practicality

B Algorithms discussed here are quite simple and very fast

— Sketches can easily process millions of updates per second
on standard hardware

— Limiting factor in practice is often I/O related
® Implemented in several practical systems:
- AT&T’'s Gigascope system on live network streams
— Sprint’s CMON system on live streams
- Google’s log analysis

B Sample implementations available on the web
- http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

— or web search for ‘massdal’

39 YaHOO!
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Conclusions

Data Streaming: Major departure from traditional

persistent database paradigm

- Fundamental re-thinking of models, assumptions, algorithms,
system architectures, ...

® Many new streaming problems posed by developing
technologies

B Simple tools from approximation and/or randomization play

a critical role in effective solutions

- Sampling, sketches (CM, FM, ...), ...

- Simple, yet powerful, ideas with great reach

— Can often “mix & match” for specific scenarios

40 YaHoO!
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