
1

Prof. Brewer CS 169 Lecture 5 1

UML: Unified Modeling Language

CS169
Lecture 5

Prof. Brewer CS 169 Lecture 5 2

Modeling

• Describing a system at a high level of
abstraction
– A model of the system
– Used for requirements and specification

• Many notations over time
– State machines
– Entity-relationship diagrams
– Dataflow diagrams
– … see last lecture …

Prof. Brewer CS 169 Lecture 5 3

Recent History: 1980’s

• The rise of object-oriented programming

• New class of OO modeling languages

• By early ’90’s, over 50 OO modeling languages

Prof. Brewer CS 169 Lecture 5 4

Recent History: 1990’s

• Three leading OO notations decide to combine
– Grady Booch (BOOCH)
– Jim Rumbaugh (OML: Object Modeling Technique)
– Ivar Jacobsen (OOSE: OO Soft. Eng)

• Why?
– Natural evolution towards each other
– Effort to set an industry standard

Prof. Brewer CS 169 Lecture 5 5

UML

• UML stands for
Unified Modeling Language

• Design by committee
– Many interest groups participating
– Everyone wants their favorite approach to be “in”

Prof. Brewer CS 169 Lecture 5 6

UML (Cont.)

• Resulting design is huge
– Many features
– Many loosely unrelated styles under one roof

• Could also be called
Union of all Modeling Languages

2

Prof. Brewer CS 169 Lecture 5 7

This Lecture

• We discuss
– Use Case Diagrams for functional models
– Class Diagrams for structural models
– Sequence Diagrams
– Activity Diagrams for dynamic models
– State Diagrams

• This is a subset of UML
– But probably the most used subset

Prof. Brewer CS 169 Lecture 5 8

Running Example: Automatic Train

• Consider an unmanned people-mover
– as in many airports

• Train
– Moves on a circular track
– Visits each of two stations (A and B) in turn
– Each station has a “request” button

• To stop at this station
– Each train has two “request” buttons

• To stop at a particular station

Prof. Brewer CS 169 Lecture 5 9

Picture

A

B

Prof. Brewer CS 169 Lecture 5 10

Use-Cases

• Describe functionality from the user’s
perspective

• One (or more) use-cases per kind of user
– May be many kinds in a complex system

• Use-cases capture requirements

Prof. Brewer CS 169 Lecture 5 11

An Example Use-Case in UML

• Name
– Normal Train Ride

• Actors
– Passenger

• Entry Condition
– Passenger at station

• Exit Condition
– Passenger leaves station

Prof. Brewer CS 169 Lecture 5 12

An Example Use-Case in UML

• Event-flow
– Passenger presses request button
– Train arrives and stops at platform
– Doors open
– Passenger steps into train
– Doors close
– Passenger presses request button for final stop
– …
– Doors open at final stop
– Passenger exits train

• Non-functional requirements

3

Prof. Brewer CS 169 Lecture 5 13

Use Case Diagram

• Graph showing
– Actors
– Use cases
– Edges actor-case if that

actor is involved in that
case

• Actors
– Stick figures

• Use cases
– Ovals

Repair

Ride

passenger

technician

Prof. Brewer CS 169 Lecture 5 14

Exceptional Situations

• Use cases have relationships
– Inclusion (E.g., push button included in ride)
– Variations

• UML has a special notation
– The “extends” relationship to express a exceptional

variation of a use case
– Normally used to express errors

Prof. Brewer CS 169 Lecture 5 15

Extension

Repair

Ride

passenger

technician

Derail

Dotted
arrow
pointing to
“normal”
case

Prof. Brewer CS 169 Lecture 5 16

Summary of Use Cases

• Use Case Diagram
– Shows all actors, use cases, relationships

• 5 parts to each use case
– Name, Actors, Entry/Exit Conditions, Event Flow
– Actors are agents external to the system

• E.g., users
– Event flows are sequence of steps

• In English

Prof. Brewer CS 169 Lecture 5 17

Class Diagrams

• Describe classes
– In the OO sense

• Each box is a class
– List fields
– List methods

• The more detail, the
more like a design it
becomes

Train
lastStop

nextStop

velocity

doorsOpen?

addStop(stop);

startTrain(velocity);

stopTrain();

openDoors();

Prof. Brewer CS 169 Lecture 5 18

Class Diagrams: Relationships

• Many different kinds of
edges to show different
relationships between
classes

• Mention just a couple

4

Prof. Brewer CS 169 Lecture 5 19

Associations

• Capture n-m
relationships
– Subsumes ER diagrams

• Label endpoints of edge
with cardinalities
– Use * for arbitrary

• Typically realized with
embedded references

• Can be directional (use
arrows in that case)

Station

RequestButton

1

1

One request button
per station; each train
has two request
buttons

Train

2

1

Prof. Brewer CS 169 Lecture 5 20

Aggregation

• Show “contains a”
relationships

• Station and Train
classes can contain their
respective buttons

• Denoted by open
diamond on the
“contains” side

Station

RequestButton

1

1

Train

2

1

Prof. Brewer CS 169 Lecture 5 21

Generalization

• Inheritance between
classes

• Denoted by open
triangle

Button

RequestButton EmergencyButton

Prof. Brewer CS 169 Lecture 5 22

Sequence Diagrams

• A table
– Columns are classes or actors
– Rows are time steps
– Entries show control/data flow

• Method invocations
• Important changes in state

Prof. Brewer CS 169 Lecture 5 23

Example Sequence Diagram

Passenger Station Train
pushButton()

addStop()

openDoors()

closeDoors()
pushButton(S)

Classes &
Actors

Prof. Brewer CS 169 Lecture 5 24

Example Sequence Diagram

Passenger Station Train
pushButton()

addStop()

openDoors()

closeDoors()
pushButton(S)

Method
invocation
Note: These
are all
synchronous
method calls.
There are
other kinds of
invocations.

5

Prof. Brewer CS 169 Lecture 5 25

Example Sequence Diagram

Passenger Station Train
pushButton()

addStop()

openDoors()

closeDoors()
pushButton(S)

Invocation
lifetime spans
lifetimes of all
nested
invocations

Prof. Brewer CS 169 Lecture 5 26

Example Sequence Diagram

Passenger Station Train
pushButton()

addStop()

openDoors()

closeDoors()
pushButton(S)

“Lifelines” fill
in time
between
invocations

Prof. Brewer CS 169 Lecture 5 27

Sequence Diagrams Notes

• Sequence diagrams
– Refine use cases
– Gives view of dynamic behavior of classes

• Class diagrams give the static class structure

• Not orthogonal to other diagrams
– Overlapping functionality
– True of all UML diagrams

Prof. Brewer CS 169 Lecture 5 28

Activity Diagrams

• Reincarnation of flow charts
– Uses flowchart symbols

• Emphasis on control-flow

• Two useful flowchart extensions
– Hierarchy

• A node may be an activity diagram
– Swim lanes

Prof. Brewer CS 169 Lecture 5 29

Example Activity Diagram

pushButton

lightButton addStop

Activities in
rounded
rectangles

May itself be a
nested activity
diagram

Station Train

Prof. Brewer CS 169 Lecture 5 30

Example Activity Diagram

pushButton

lightButton addStop

Concurrency,
fork & join

Station Train

6

Prof. Brewer CS 169 Lecture 5 31

Example Activity Diagram

pushButton

lightButton addStop

Swim lanes
show which
classes/actors
are responsible
for which part
of the diagram

Station Train

Prof. Brewer CS 169 Lecture 5 32

Another Example Activity Diagram

stopTrain announceNoStop

StopRequested?

yes no

Classic flow-
chart if-then-
else

Prof. Brewer CS 169 Lecture 5 33

StateCharts

• Hierarchical finite automata
– Invented by David Harel, 1983

• Specify automata with many states compactly

• Complications in meaning of transitions
– What it means to enter/exit a compound state

Prof. Brewer CS 169 Lecture 5 34

Example Simple StateChart

off

on

pushdepart

Button

Prof. Brewer CS 169 Lecture 5 35

StateChart for the Train

• A train can be
– At a station
– Between stations

• Pending requests are subset of {A,B}

• 16 possible states
– Transitions: pushA, pushB, departA, departB, …

Prof. Brewer CS 169 Lecture 5 36

StateChart for Buttons + Train

off

on

pushAdepartA

ButtonA

ButtonB

Train

atA, A

AtoB, none

departA

derail

Dotted lines
separate
concurrent
automata

7

Prof. Brewer CS 169 Lecture 5 37

StateChart for Buttons + Train

off

on

pushAdepartA

ButtonA

ButtonB

Train

atA, A

AtoB, none

departA

derail

Transition
causes control
to leave any
possible state
of the
component
automaton

Prof. Brewer CS 169 Lecture 5 38

Opinions about UML: What’s Good

• A common language
– Makes it easier to share requirements, specs, designs

• Visual syntax is useful, to a point
– A picture is worth 1000 words
– For the non-technical, easier to grasp simple diagrams than

simple pseudo-code

• To the extent UML is precise, forces clarity
– Much better than natural language

• Commercial tool support
– Something natural language could never have

Prof. Brewer CS 169 Lecture 5 39

Opinions On UML: What’s Bad

• Hodge-podge of ideas
– Union of most popular modeling languages
– Sublanguages remain largely unintegrated

• Visual syntax does not scale well
– Many details are hard to depict visually

• Ad hoc text attached to diagrams
– No visualization advantage for large diagrams

• 1000 pictures are very hard to understand

• Semantics is not completely clear
– Some parts of UML underspecified, inconsistent
– Plans to fix

Prof. Brewer CS 169 Lecture 5 40

UML is Happening

• UML is being widely adopted
– By users
– By tool vendors
– By programmers

• A step forward
– Seems useful
– First standard for high-levels of software process
– Expect further evolution, development of UML

