
Chapter 9

Nonsmooth Optimization Methods

The gradient method for smooth functions f , described in Chapter 3, is intuitive in that is that it
follows the direction of steepest descent at each iteration, which is a guaranteed direction of descent
for f . Generalizing this method to nonsmooth functions f is not straighforward, as the “gradient”
may not be uniquely defined, even for convex f , as we saw in Chapter 8. A natural idea would
be to choose a vector from the subdifferential ∂f and use the negative of this vector as a search
direction, but simple examples show that sucha direction may not given descent in f .

The simplest example is the absolute value function f(x) = |x|, where x ∈ R. At the minimizing
value x = 0, the subdifferential is ∂|0| = [−1, 1], and any vector drawn from this interval (except
for the very special choice g = 0) will step away from 0 and thus increase the function value. The
situation only gets worse in higher dimensions. Consider the two-dimensional function f : R2 → R
defined by

f(x1, x2) = |x1|+ 2|x2|,

whose optimum is (0, 0). At the point (1, 0), the subdifferential here is the compact (but infinite)
set

∂f(1, 0) = {(1, z) | |z| ≤ 2}

For the particular subgradient g = (1, 2), the directional derivative in the negative of this direction
is

f ′((1, 0); (−1,−2)) = sup
g∈∂f(1,0)

−g1 − 2g2 = −1 + 4 = 3 ,

showing that the function increases along this direction. These trivial examples, and another
example illustrated in Figure 9.1 show that it is not obvious how to design a method that follows
subgradients.

However, methods based on subgradients exist and are effective, and we describe three of them
in this chapter. First, show how to compute the direction of steepest descent of a convex nonsmooth
function, and will reveal that this direction is the negative of a subgradient (albeit a very special
subgradient). Second, we show how using carefully selected stepsizes will allow us to follow arbitrary
subgradients, even ones that increase the function, and still get provable convergence behavior over
the long term. (Convergence of these methods is however quite slow, both in theory and practice.)
Finally, we describe proximal methods, which exploit the structure of some interesting special cases
of nonsmooth functions to obtain faster convergence.
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Figure 9.1: Subgradient of a function that is the max of two planes defined by vectors a1 and
a2. Given a point x at which both planes achieve the maximum, the subgradient is ∂f(x) =
{λa1 + (1 − λ)a2 |λ ∈ [0, 1]}. The set of points {x − g | g ∈ ∂f(x)} is a line segment (illustrated).
The shaded region is the set of points with a smaller function value than f(x). Note that some
points of the form x−αg for α > 0 and g ∈ ∂f(x) have f(x−αg) < f(x). However there are other
points with the same form for which f(x − αg) > f(x) for all α > 0. That is, some but not all
negative subgradients yield descent in f .
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9.1 Subgradient Descent

When x is not a minimizer of f , the subdifferential ∂f(x) always contains a vector g such that −g
is a descent direction for f . The vector gmin with smallest norm in ∂f(x) has this property, and in
fact −gmin is the direction of steepest descent. We define

gmin := arg min
z∈∂f(x)

‖z‖2 . (9.1)

gmin exists because ∂f(x) is nonempty and compact.

Proposition 9.1. For a convex function f , and x ∈ dom f that is not a minimizer of f , the vector
−gmin defined from (9.1) is a descent direction at x.

Proof. Note first that we have

〈gmin, ĝ − gmin〉 ≥ 0, for all ĝ ∈ ∂f(x). (9.2)

To see this, suppose otherwise. Then since

gmin + t(ĝ − gmin) ∈ ∂f(x)

for all t ∈ [0, 1], we have

d

dt
‖gmin + t(ĝ − gmin)‖2

∣∣∣∣
t=0

= 2〈gmin, ĝ − gmin〉 < 0

which contradicts the fact that gmin minimizes ‖g‖2 over g ∈ ∂f(x). From (9.2), we have 〈ĝ, gmn〉 ≥
‖gmn‖22 for all ĝ ∈ ∂f(x), so that

f ′(x;−gmin) = sup
g∈∂f(x)

〈−gmin, g〉 = − inf
g∈∂f(x)

〈gmin, g〉 ≤ −‖gmin‖22,

proving that −gmin is a descent direction whenever it is nonzero. To see that −gmin is the steepest
descent direction, we use a min-max argument. Note that

inf
‖v‖≤1

f ′(x; v) = inf
‖v‖≤1

sup
g∈∂f(x)

〈v, g〉 ≤ sup
g∈∂f(x)

inf
‖v‖≤1

〈v, g〉 = sup
g∈∂f(x)

−‖g‖ = −‖gmn‖ .

The inequality in this expression follows from weak duality, which we cover in the next chapter.
The reader can verify, however, that for any function ϕ(x, z), we have

inf
x

sup
z
ϕ(x, z) ≤ sup

z
inf
x
ϕ(x, z) .

completing the proof.

Example 9.1. Consider the function f(x) = ‖x‖1, whose minimizer is x = 0. At any nonzero x,
the subdifferential ∂‖x‖1 consists of vectors g such that

gi ∈


{+1} if xi > 0

{−1} if xi < 0

[−1, 1] if xi = 0.
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The minimum-norm subgradient is thus gmin, where

(gmin)i =


+1 if xi > 0

−1 if xi < 0

0 if xi = 0.

Proposition 9.1 suggests a natural algorithm for minimizing convex, nonsmooth functions: Com-
pute the minimum norm element of the subdifferential and search along the negative of this di-
rection. The problem with this approach is that computing the minimum norm element might be
prohibitively expensive. In the next section, we show that a naive algorithm that simply follows
arbitrary subgradients can converge, under appropriate choices of steplengths.

9.2 The Subgradient Method

The subgradient method is rather simple: Starting from a point x1, at each step k, we choose any
element of the subdifferential gk ∈ ∂f(xk) and set

xk+1 = xk − αkgk .

Though we have already pointed out that this method may take steps that increase f , the weighted
average of all iterates encountered so far, defined by

x̄T = λ−1
T

T∑
j=1

αkxk, where λT :=
T∑
j=1

αj (9.3)

is well behaved, and may even converge to a minimizer of f .
The analysis of this method is nearly identical to the proof of convergence of the stochastic

gradient method for convex functions with bounded stochastic gradients. We assume that for all

‖g‖2 ≤ G, for all g ∈ ∂f(x) and all x.

Note that this assumption implies that f must be Lipschitz with constant G (why?). We also
denote by x? a minimizer of f , and define

D0 := ‖x1 − x?‖, (9.4)

which is the distance of the initial point to a minimizer of f .
To proceed with our analysis of the behavior of the weighted-average iterate x̄T , we expand the

distance to an optimal solution of iterate xk+1:

‖xk+1 − x?‖2 = ‖xk − αkgk − x?‖2

= ‖xk − x?‖2 − 2αk〈gk, xk − x?〉+ α2
k‖gk‖2

≤ ‖xk − x?‖2 − 2αk〈gk, xk − x?〉+ α2
kG

2 . (9.5)

Note that this exactly looks like our basic inequality for the subgradient method (5.26), except
there are no expected values here. We can rearrange (9.5) to obtain

αk〈gk, xk − x?〉 ≤
1

2
‖xk − x?‖2 −

1

2
‖xk+1 − x?‖2 +

1

2
G2α2

k. (9.6)
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Since gk ∈ ∂f(xk), we have by the definition of subgradient that

f(xk)− f(x?) ≤ 〈gk, xk − x?〉. (9.7)

By multiplying both sides of (9.7) by αk > 0, combining with (9.6), summing both sides from k = 1
to k = T , and using convexity of f , we obtain

f(x̄T )− f(x?) ≤ λ−1
T

T∑
k=1

αk(f(xk)− f(x?))

≤ λ−1
T

1

2

T∑
k=1

(
‖xk − x?‖2 − ‖xk+1 − x?‖2

)
+

1

2
λ−1
T G2

T∑
k=1

α2
k

≤ λ−1
T

1

2

(
‖x1 − x?‖2 − ‖xT+1 − x?‖2)

)
+

1

2
λ−1
T G2

T∑
k=1

α2
k

≤
D2

0 +G2
∑T

k=1 α
2
k

2
∑T

k=1 αk
. (9.8)

We also immediately have the bound

min
t≤T

f (xt)− f(x?) ≤ λ−1
T

T∑
t=1

αt(f(xt)− f(x?))

so our analysis works for both the weighted average of the first T iterates and the best of these
iterates.

9.2.1 Stepsizes

Let us look at different possibilities for our stepsizes αk, k = 1, 2, . . . .

Constant step size. First, we can just pick αk = α for all k. In this case, we from (9.8) that

f (x̄T )− f(x?) ≤
D2

0 + TG2α2

2Tα
.

The choice α = θD0

G
√
T

for some parameter θ > 0 yields

f (x̄T )− f(x?) ≤ 1
2

(
θ + θ−1

) D0G√
T
,

and the bound is minimized when we set θ = 1.

Constant step length. An alternative is to choose αk = α
‖gk‖ , so that the length of each step

αkgk is constant. A slight modification of the analysis above yields the bound

f (x̄T )− f(x?) ≤
D2

0 + Tα2

2Tα/G
.
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Setting α = θD0√
T

, we obtain

f (x̄T )− f(x?) ≤ 1
2

(
θ + θ−1

) D0G√
T
,

which matches our bound for the constant step size. Note that here our step size depends only D0

(distance of x1 to optimality) and not G (maximal subgradient norm).

An interesting feature of both choices so far is that the bound is not very sensitive to errors in
the estimates of D0 and G. Such errors can be captured in the parameter θ, and we see that the
bound increases by only the modest factor 1

2(θ + θ−1) when θ moves away from its optimal value
of 1.

9.2.2 Diminishing Step Size

The fixed stepsizes above required us to make a prior choice of T , the number of iterates to be
taken. We now consider making choices of αk that depend on k, and that decrease as k increases.
Such choices do not require us to choose T in advance, and guarantee convergence to the optimal
value of f as the number of iterates goes to ∞.

From (9.8), we see that for any sequence αk > 0 such that αk → 0, but
∑T

k=1 αk ↑ ∞ as T →∞,
then

lim
T→∞

f (x̄T ) = f(x?) .

This is particularly easy to see if
∑

k α
2
k = M <∞, because we have from (9.8) that

f(x̄T )− f? ≤
D2

0 +G2
∑T

j=1 α
2
j

2
∑T

t=1 αt
≤ D2

0 +G2M

2
∑T

j=1 αj
,

and the left-hand side clearly tends to zero as T →∞. To see that this approach works for general
diminishing stepsizes, one only needs to prove that∑T

j=1 α
2
j∑T

j=1 αj
→ 0, as T →∞,

whenever αk tends to zero but
∑T

k=1 αk diverges.

We close this section by deriving more quantitative bounds for an explicit stepsize choice.
Setting αk = θ√

k
, we have

f(x̄T )− f? ≤
D2

0 +G2θ2
∑T

j=1 j
−1

2θ
∑T

j=1 j
−1/2

≤ D2
0 +G2θ2(log T + 1)

2θ
√
T

. (9.9)

The upper bound in the numerator comes from the Riemann-sum bound

T∑
j=1

j−1 ≤ 1 +

∫ T

t=1

1

t
dt ≤ log T + 1,
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while the lower bound in the denominator comes from

T∑
j=1

j−1/2 ≥
T∑
j=1

T−1/2 = T 1/2.

Note that this bound tends to zero at a rate of log(T )/
√
T . This is very slightly slower than the

1/
√
T rate of a constant stepsize, but we are guaranteed asymptotic convergence to zero, and can

continue to iterate well beyond a fixed number of iterations.

The alternative diminishing stepsize choice αk ∝ k−p for p ∈ (0, 1) yields a worse convergence
bound than for p = 1/2.

More sophisticated schemes for choosing stepsizes involve a combination of fixed and diminishing
sizes. The stepsize is fixed for a number of consecutive iterations (sometimes called an epoch), and
then decreased to a smaller value, which again is fixed for a number of consecutive iterations.

9.3 Proximal-Gradient Algorithms for Regularized Optimization

While provably correct, the 1/
√
T rate of the subgradient method is considerably slower than the

rates achievable for smooth functions. In this section, we explore how to exploit partial smoothness
to accelerate the convergence rates for nonsmooth convex optimization. In particular, we describe
an elementary but powerful approach for solving the regularized optimization problem

min
x∈Rn

φ(x) := f(x) + τψ(x), (9.10)

where f is a smooth convex function, ψ is a convex regularization function (known simply as
the “regularizer”), and τ ≥ 0 is a regularization parameter. The technique we describe here is
a natural extension of the steepest-descent approach, in that it reduces to the steepest-descent
method analyzed in Theorem 3.3 applied to f when the regularization term is not present (τ = 0).
It is useful when the regularizer ψ has a simple structure that is easy to account for explicitly, as
is true for many regularizers that arise in data analysis, such as the `1 function (ψ(x) = ‖x‖1) and
the indicator function for a simple set Ω (ψ(x) = IΩ(x)), such as a box Ω = [l1, u1]⊗ [l2, u2]⊗ . . .⊗
[ln, un]. Moreover, as we will see, the convergence rate will be dictated by the smooth part of the
decomposition in (9.10) even thought he function φ is not smooth.

Each step of the algorithm is defined as follows:

xk+1 := prox αkτψ(xk − αk∇f(xk)), (9.11)

for some steplength αk > 0, and the prox operator defined in (8.25). By substituting into this
definition, we can verify that xk+1 is the solution of an approximation to the objective ψ of (9.10),
namely:

xk+1 := arg min
z
∇f(xk)T (z − xk) +

1

2αk
‖z − xk‖2 + τψ(z). (9.12)

One way to verify this equivalence is to note that the objective in (9.12) can be written as

1

αk

{
1

2

∥∥∥z − (xk − αk∇f(xk))
∥∥∥2

+ αkτψ(x)

}
,
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(modulo a term αk‖∇f(xk)‖2 that does not involve z). The subproblem objective in (9.12) consists
of a linear term ∇f(xk)T (z − xk) (the first-order term in a Taylor-series expansion), a proximality
term 1

2αk
‖z − xk‖2 that becomes more strict as αk ↓ 0, and the regularization term τψ(x) in

unaltered form. When τ = 0, we have xk+1 = xk − αk∇f(xk), so the iteration (9.11) (or (9.12))
reduces to the usual steepest-descent approach discussed in Chapter 3 in this case. It is useful to
continue thinking of αk as playing the role of a line-search parameter, though here the line search
is expressed implicitly through a proximal term.

The key idea behind the proximal gradient algorithm is summed up by the following proposition
that shows that every fixed point of (9.11) is a minimizer of φ:

Proposition 9.2. Let f be differentiable and convex and let ψ be convex. x? is an optimal solution
of (9.10) if and only if x? = prox ατψ(x? − α∇f(x?)) for all α > 0.

Proof. x? is an optimal solution if and only if −∇f(x?) ∈ ∂τψ(x?). This is equivalent to

(x? − α∇f(x?))− x? ∈ α∂τψ(x?) ,

which is equivalent to x? = prox ατψ(x? − α∇f(x?)).

With regards to convergence, the linear convergence of the proximal gradient method when f is
strongly convex problems can be derived in a nearly similar way to that of the projected gradient
method. Indeed, we only need to invoke the nonexpansive property of the proximity operator (See
Proposition 8.20) and then follow the argument in Section 7.3.2 to conclude

Proposition 9.3. Let f be have L-Lipschitz gradients and strong convexity parameter m and let
ψ be convex. Let x? be the unique minimizer of φ = f + τψ. Then the iterates of the proximal
gradient method with stepsize 2

m+L satisfy

‖xk − x?‖ ≤
(
κ− 1

κ+ 1

)k
‖x0 − x?‖ . (9.13)

For weakly convex functions, the proof is more delicate, and we now turn to a proof that will
show that the proximal gradient method converges at a rate of 1/T , just as in the case of smooth
convex functions.

9.3.1 Convergence Rate for Weakly Convex f

We will demonstrate convergence of the method (9.11) at a sublinear rate, for functions f whose
gradients satisfy a Lipschitz continuity property with Lipschitz constant L (see (2.7)), and for the
constant steplength choice αk = 1/L. We follow closely the approach in the lecture on “Proximal
Gradient Methods” of [32].

The proof makes use of a “gradient map” defined by

Gα(x) :=
1

α
(x− prox ατψ(x− α∇f(x))) . (9.14)

By comparing with (9.11), we see that this map defines the step taken at iteration k:

xk+1 = xk − αkGαk
(xk) ⇔ Gαk

=
1

αk
(xk − xk+1). (9.15)

The following technical lemma reveals some useful properties of Gα(x).
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Lemma 9.4. Suppose that in problem (9.10), ψ is a closed convex function and that f is is convex
with Lipschitz continuous gradient on Rn, with Lipschitz constant L. Then for the definition (9.14)
with α > 0, the following claims are true.

(a) Gα(x) ∈ ∇f(x) + τ∂ψ(x− αGα(x)).

(b) For any z, and any α ∈ (0, 1/L], we have that

φ(x− αGα(x)) ≤ φ(z) +Gα(x)T (x− z)− α

2
‖Gα(x)‖2.

Proof. For part (a), we use the optimality property (8.26) of the prox operator, and make the
following substitutions: x− α∇f(x) for “x”, α for “λ”, and τψ for “h” to obtain

0 ∈ ατ∂ψ(prox ατψ(x− α∇f(x))) + (prox ατψ(x− α∇f(x))− (x− α∇f(x)).

We use definition (9.14) to make the substitution prox ατψ(x− α∇f(x)) = x− αGα(x), to obtain

0 ∈ ατ∂ψ(x− αGα(x))− α(Gα(x)−∇f(x)),

and the result follows when we divide by α.
For (b), we start with the following consequence of Lipschitz continuity of ∇f , from Lemma ??:

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2.

By setting y = x− αGα(x), for any α ∈ (0, 1/L], we have

f(x− αGα(x)) ≤ f(x)− αGα(x)T∇f(x) +
Lα2

2
‖Gα(x)‖2

≤ f(x)− αGα(x)T∇f(x) +
α

2
‖Gα(x)‖2. (9.16)

(The second inequality uses α ∈ (0, 1/L].) We also have by convexity of f and ψ that for any z
and any v ∈ ∂ψ(x− αGα(x) the following are true:

f(z) ≥ f(x) +∇f(x)T (z − x), ψ(z) ≥ ψ(x− αGα(x)) + vT (z − (x− αGα(x))). (9.17)

We have from part (a) that v = (Gα(x) −∇f(x))/τ ∈ ∂ψ(x − αGα(x)), so by making this choice
of v in (9.17) and also using (9.16) we have for any α ∈ (0, 1/L] that

φ(x− αGα(x)) = f(x− αGα(x)) + τψ(x− αGα(x))

≤ f(x)− αGα(x)T∇f(x) +
α

2
‖Gα(x)‖2 + τψ(x− αGα(x)) (from (9.16))

≤ f(z) +∇f(x)T (x− z)− αGα(x)T∇f(x) +
α

2
‖Gα(x)‖2

+ τψ(z) + (Gα(x)−∇f(x))T (x− αGα(x)− z) (from (9.17))

= f(z) + τψ(z) +Gα(x)T (x− z)− α

2
‖Gα(x)‖2,

where the last equality follows from cancellation of several terms in the previous line. Thus (b) is
proved.
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Theorem 9.5. Suppose that in problem (9.10), ψ is a closed convex function and that f is is
convex with Lipschitz continuous gradient on Rn, with Lipschitz constant L. Suppose that (9.10)
attains a minimizer x∗ (not necessarily unique) with optimal objective value φ∗. Then if αk = 1/L
for all k in (9.11), we have

φ(xk)− φ∗ ≤ L‖x0 − x∗‖2

2k
, k = 1, 2, . . . .

Proof. Since αk = 1/L satisfies the conditions of Lemma 9.4, we can use part (b) of this result
to show that the sequence {φ(xk)} is decreasing and that the distance to the optimum x∗ also
decreases at each iteration. Setting x = z = xk and α = αk in Lemma 9.4, and recalling (9.15), we
have

φ(xk+1) = φ(xk − αkGαk
(xk)) ≤ φ(xk)− αk

2
‖Gαk

(xk)‖2,

justifying the first claim. For the second claim, we have by setting x = xk, α = αk, and z = x∗ in
Lemma 9.4 that

0 ≤ φ(xk+1)− φ∗ = φ(xk − αkGαk
(xk))− φ∗

≤ GTαk
(xk − x∗)− αk

2
‖Gαk

(xk)‖2

=
1

2αk

(
‖xk − x∗‖2 − ‖xk − x∗ − αkGαk

(xk)‖2
)

=
1

2αk

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
, (9.18)

from which ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ follows.
By setting αk = 1/L in (9.18), and summing over k = 0, 1, 2, . . . ,K − 1, we obtain from a

telescoping sum on the right-hand side that

K−1∑
k=0

(φ(xk+1)− φ∗) ≤ L

2

(
‖x0 − x∗‖2 − ‖xK − x∗‖2

)
≤ L

2
‖x0 − x∗‖2.

By monotonicity of {φ(xk)}, we have

K(φ(xK)− φ∗) ≤
K−1∑
k=0

(φ(xk+1)− φ∗).

The result follows immediately by combining these last two expressions.

9.4 Proximal Coordinate Descent for Structured Nonsmooth Func-
tions

Coordinate descent methods and proximal gradient methods can be combined n a fairly straight-
forward way to componentwise regularized objectives of the form

min
x∈Rn

h(x) := f(x) + λ

n∑
i=1

Ωi(xi), (9.19)
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where f is convex as before and each regularization term Ωi : R → R is convex but possibly
nonsmooth. Mirroring the proximal gradient method, in place of the step (6.2) along coordinate
ik, we obtain the next iteration by solving the following scalar subproblem:

χk := arg min
χ

(χ− xkik)T∇ikf(xk) +
1

2αk
|χ− xkik |

2 + λΩik(χ). (9.20)

Which we recognize as

xk+1
i = prox αλΩik

(xki − αk∇ikf(xk)) (9.21)

In this section we prove a result for the randomized CD method, which applies the step (9.20),
(9.21) to a component ik selected randomly and uniformly from {1, 2, . . . , n} at each iteration. We
prove the result for the case of strongly convex f , using a simplified version of the analysis from
[27]. It makes use of the following assumption.

Assumption 2. The function f in (9.19) is uniformly Lipschitz continuously differentiable and
strongly convex with modulus µ > 0 (see (2.17)). The functions Ωi, i = 1, 2, . . . , n are convex.

Under this assumption, coercivity implies that h attains its minimum value h∗ at a unique point
x∗.

Our result uses the coordinate Lipschitz constant Lmax for f , as defined in (6.5). Note that
the modulus of convexity µ for f is also the modulus of convexity for h. By elementary results for
convex functions, we have that

h(αx+ (1− α)y) ≤ αh(x) + (1− α)h(y)− 1

2
µα(1− α)‖x− y‖2. (9.22)

Theorem 9.6. Suppose that Assumption 2 holds. Suppose that the indices ik in (9.20) are chosen
independently for each k with uniform probability from {1, 2, . . . , n}, and that αk ≡ 1/Lmax. Then
for all k ≥ 0, we have

E
(
h(xk)

)
− h∗ ≤

(
1− µ

nLmax

)k
(h(x0)− h∗). (9.23)

Proof. Define the function

H(xk, z) := f(xk) +∇f(xk)T (z − xk) +
1

2
Lmax‖z − xk‖2 + λΩ(z),

and note that this function is separable in the components of z, and attains its minimum over z at
the vector zk whose ik component is defined in (9.20). Note by strong convexity (2.17), we have
that

H(xk, z) ≤ f(z)− 1

2
µ‖z − xk‖2 +

1

2
Lmax‖z − xk‖2 + λΩ(z)

= h(z) +
1

2
(Lmax − µ)‖z − xk‖2. (9.24)
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We have by minimizing both sides over z in this expression that

H(xk, zk) = min
z

H(xk, z)

≤ min
z

h(z) +
1

2
(Lmax − µ)‖z − xk‖2

≤ min
α∈[0,1]

h(αx∗ + (1− α)xk) +
1

2
(Lmax − µ)α2‖xk − x∗‖2

≤ min
α∈[0,1]

αh∗ + (1− α)h(xk) +
1

2

[
(Lmax − µ)α2 − µα(1− α)

]
‖xk − x∗‖2

≤ µ

Lmax
h∗ +

(
1− µ

Lmax

)
h(xk), (9.25)

where we used (9.24) for the first inequality, (9.22) for the third inequality, and the particular
value α = µ/Lmax for the fourth inequality (for which value the coefficient of ‖xk − x∗‖2 vanishes).
Taking the expected value of h(xk+1) over the index ik, we have

Eikh(xk+1) =
1

n

n∑
i=1

f(xk + (zki − xki )ei) + λΩi(z
k
i ) + λ

∑
j 6=i

Ωj(x
k
j )


≤ 1

n

n∑
i=1

{
f(xk) + [∇f(xk)]i(z

k
i − xki ) +

1

2
Lmax(zki − xki )2

+λΩi(z
k
i ) + λ

∑
j 6=i

Ωj(x
k
j )


=
n− 1

n
h(xk) +

1

n

[
f(xk) +∇f(xk)T (zk − xk)

+
1

2
Lmax‖zk − xk‖2 + λΩ(zk)

]
=
n− 1

n
h(xk) +

1

n
H(xk, zk).

By subtracting h∗ from both sides of this expression, and using (9.25) to substitute for H(xk, zk),
we obtain

Eikh(xk+1)− h∗ ≤
(

1− µ

nLmax

)
(h(xk)− h∗).

By taking expectations of both sides of this expression with respect to the random indices i0, i1, i2, . . . , ik−1,
we obtain

E(h(xk+1))− h∗ ≤
(

1− µ

nLmax

)
(E(h(xk))− h∗).

The result follows from a recursive application of this formula.

A result similar to (6.8) can be proved for the case in which f is convex but not strongly convex,
but there are a few technical complications (see [27]).
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9.5 Proximal Point Method

The proximal-point method (due to Rockafellar [30]) is a fundamental method for solving the
problem

min
x∈Rn

ψ(x), (9.26)

where ψ is a convex function. The iterates are obtained from

xk+1 := arg min
z

ψ(z) +
1

2αk
‖z − xk‖2 = prox αkψ(xk), (9.27)

where αk > 0 is a steplength parameter. Note that smoothness of ψ is not required. The problem
(9.26) is a special case of (9.10) in which we set f = 0 and τ = 1. We can thus state convergence
results are corollaries of the results in Section 9.3.

The subproblem to be solved in (9.27) for the proximal-point method contains the original
objective ψ, thus would appear to be as difficult to solve as the original problem. The quadratic
regularization term in (9.27) plays an important stabilizing role. In important special cases (such
as the augmented Lagrangian methods described in Chapter 11), its presence actually makes the
solution of problem (9.27) much easier than the solution of the original problem (9.26).

Because there is no smooth part f in (9.26) (when we compare the objectives in (9.10) and
(9.26)), there are no restrictions on the steplengths αk. In a constant-steplength variant of (9.27),
we can fix αk ≡ α for any α > 0, and set L = 1/α in Theorem 9.5 to obtain the following
convergence result.

Theorem 9.7. Suppose that ψ is a closed convex function in (9.26) and that (9.26) attains a
minimizer x∗ (not necessarily unique) with optimal objective value ψ∗. Then if αk = α > 0 for all
k in (9.27), we have

ψ(xk)− ψ∗ ≤ ‖x
0 − x∗‖2

2αk
, k = 1, 2, . . . .

We observe again a sublinear 1/k rate of convergence, with a constant term depending inversely
on α. The dependence on α makes intuitive sense. If α is chosen to be large, the quadratic regu-
larization in (9.27) is mild, and the constant factor ‖x0 − x∗‖2/(2α) in the convergence expression
is small. (In the extreme case, as α → ∞, the effect of regularization vanishes, and the approach
(9.27) almost converges in one step. This is not surprising, as (9.27) is close to the original prob-
lem (9.26) in this case.) When α is smaller, the quadratic regularization is more significant, the
constant in the convergence experession is corresponding larger, so overall convergence is slower,
when measured in terms of iterations. However, in the latter case, each subproblem may be easier
to solve, as we may be able to use the approximate solution of one subproblem as a “warm start”
for the following subproblem. Overall, the optimal choice of parameter α will depend very much
on the structure of ψ.

Exercises

1. Let {αk}k=1,2,... be a sequence of positive number such that αk ↓ 0 but
∑T

k=1 αk ↑ ∞ as
T →∞. Show that ∑T

j=1 α
2
j∑T

j=1 αj
→ 0, as T →∞.
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2. Consider the subgradient method with diminishing stepsize of the form αk = θ/kp for some
fixed value of p in the range (0, 1). Using the techniques of Section 9.2, find a bound on
f(x̄T )− f ∗x?) that generalizes the bound (9.9) for the particular choice p = 1/2. Verify that
p = 1/2 yields the tightest bound for p ∈ (0, 1).
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