
Chapter 8

Nonsmooth Functions and
Subgradients

Most of our discussion so far has focused on functions f : Rn → R that are smooth, at least
differentiable. But there are many interesting optimization problems in data analysis that involve
nonsmooth functions. When these functions are convex, it is not difficult to generalize the concept
of a gradient. These generalizations, known as subgradients and subdifferentials, are the subject
of this chapter. We show in the next chapter and beyond how they can be used to construct
algorithms, related to those of earlier chapters, but with their own convergence and complexity
analysis.

We start with a few examples of interesting nonsmooth functions. In Section 1.3 we introduced
the “hinge loss” function, which appears often in support vector machines and deep learning. This
function h : R→ R has the form

h(t) = max(t, 0).

It is obviously differentiable at every nonzero value of t, since h′(t) = 0 for t < 0 and h′(t) = 1 for
t > 0. As t moves through 0, the gradient switches instantly from 0 to 1. We may be tempted to
think of both these values as a kind of derivative for h at t = 0, and we would be right! Both values
are “subgradients” of h. In fact, any value between 0 and 1 is also a subgradient. The collection of
all subgradients at t = 0 — the closed interval [0, 1] — is the “subdifferential” of h at t = 0.

A similar example is the absolute value function h(t) = |t| which has derivative −1 for t < 0
and +1 for t > 0. At t = 0, the subdifferential of h is the interval [−1, 1] and as always, each point
in the subdifferential is a subgradient.

Consider next the multivariate function f(x) = max(aT1 x + b1, a
T
2 x + b2), where a1 and a2 are

(distinct) vectors in Rn and b1 and b2 are scalars. It is easy to verify that f is convex and piecewise
linear. In fact, there are just two pieces: A region in which aT1 x+b1 ≥ aT2 x+b2 and another in which
aT1 x+ b1 ≤ aT2 x+ b2. These regions both include the hyperplane defined by aT1 x+ b1 = aT2 x+ b2,
where the maximum in f is achieved by both linear pieces. In the interior of each region, the
gradient ∇f(x) is defined uniquely; we have

aT1 x+ b1 > aT2 x+ b2 ⇒ ∇f(x) = a1,

aT1 x+ b1 < aT2 x+ b2 ⇒ ∇f(x) = a2.
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Along the hypeplane aT1 x+ b1 = aT2 x+ b2, and similarly to the hinge loss function, the appropriate
definition of subdifferential is the line joining a1 and a2 in Rn space, that is, {αa1 + (1−α)a2 |α ∈
[0, 1]}.

Other nonsmooth functions include norms, which are always nondifferentiable at 0 (see Ex-
ercises). More exotically, the maximum eigenvalue of a symmetric matrix is a convex, but not
differentiable, function of its elements. We can see this by considering the special case of diagonal
2× 2 matrices [

a11 0
0 a22

]
,

whose maximum eigenvalue is max(a11, a22), a nonsmooth (in fact, piecewise linear) function of its
entries.1

Besides being of interest in their own right as a way to formulate important applications,
nonsmooth convex functions play a major role in constrained optimization, where they can be used
both to derive optimality conditions and to construct useful algorithms.

8.1 Subgradients and Subdifferentials

In this section we allow the convex function f to be an extended real-valued convex function, by
which we mean that it is allowed to take infinite values at some points. (In some later discussions,
we will restrict f to have finite values at all x.) We state here some useful definitions.

• The effective domain of f , denoted by dom f , is defined to be the set of points x ∈ Rn for
which f(x) <∞.

• The epigraph of f is the convex subset of Rn+1 defined by

epi f := {(x, t) ∈ Ω× R : t ≥ f(x)}. (8.1)

• f is a proper convex function if f(x) < +∞ for some x ∈ Rn and f(x) > −∞ for all x ∈ Rn.
All convex functions of practical interest are proper.

• f is a closed proper convex function if it is a proper convex function and the set {x ∈ Rn :
f(x) ≤ t̄} is a closed set for all t̄ ∈ R.

• f is lower semicontinuous at x if for all sequences {yk} such that yk → x we have lim infk→∞ f(yk) ≥
f(x).

We define the subgradient and subdifferential as follows.

Definition 8.1. Given x ∈ dom f , we say that g ∈ Rn is a subgradient of f at x if

f(z) ≥ f(x) + gT (z − x), for all z ∈ dom f .

The subdifferential of f at x, denoted by ∂f(x), is the set of all subgradients of f at x.

1The maximum eigenvalue is a convex function because it can be defined by maxv:‖v‖2=1 v
TAv, which is a supre-

mum over an infinite number of functions that are linear in the elements of A.
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It follows immediately from this definition that ∂f(x) is closed and convex, for all x (see the
Exercises).

Note that if z is outside the effective domain of f , we have f(z) =∞. Thus there is no need to
restrict z to dom f in the definition above, so we can say that g is a subgradient of f at x if

f(z) ≥ f(x) + gT (z − x), for all z ∈ Rn. (8.2)

Definition 8.1 leads immediately to a characterization of the minimizer of a convex function.

Theorem 8.2 (Optimality Conditions for Convex Function). The point x∗ is a minimizer of the
convex function f if and only if 0 ∈ ∂f(x∗).

Proof. If 0 ∈ ∂f(x∗), we have by substituting g = 0 into (8.2) that f(z) ≥ f(x∗) for all z ∈ Rn,
confirming that x∗ is a global minimizer. Conversely, if f(z) ≥ f(x∗) for all z ∈ dom f , then g = 0
satisfies Definition 8.1, so 0 ∈ ∂f(x∗).

Each subgradient can be identified with a supporting hyperplane to the epigraph of f . We have
the following result (illustrated in Figure 8.1).

Theorem 8.3. g ∈ ∂f(x) if and only if (g,−1) defines a supporting hyperplane to epi f at the
point (x, f(x)), that is, [

g
−1

]T {[
y
t

]
−
[
x

f(x)

]}
≤ 0 for all (y, t) ∈ epi f .

Proof. Given a supporting hyperplane defined by (g,−1) at (x, f(x)), we have for any y that
(y, f(y)) ∈ epi f and therefore

0 ≥
[
g
−1

]T [
y − x

f(y)− f(x)

]
= gT (y − x)− (f(y)− f(x)) ⇔ f(y) ≥ f(x) + gT (y − x),

which implies that g ∈ ∂f(x). For the converse, given g ∈ ∂f(x), we have for any (y, t) ∈ epi f that
f(y) ≥ f(x) + gT (y − x) and t ≥ f(y). Thus[

g
−1

]T [
y − x
t− f(x)

]
≤
[
g
−1

]T [
y − x

f(y)− f(x)

]
≤ 0,

proving that (g,−1) defines the supporting hyperplane.

We now prove a sufficient condition for existence of a subgradient.

Lemma 8.4. A subgradient g of f exists at x if x is in the interior of the effective domain of f .

Proof. The assumption implies that there is ε > 0 such that all f(x + w) < ∞ for all w with
‖w‖ ≤ ε. Since (x, f(x)) is on the boundary of the convex set epi f , the supporting hyperplane
result, Theorem A.16, implies that there exists a nonzero vector c ∈ Rn and a scalar β ∈ R such
that [

c
β

]T ([
z
t

]
−
[
x

f(x)

])
≤ 0, for all (z, t) ∈ epi f . (8.3)
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Figure 8.1: Theorem 8.3 illustrated: g ∈ ∂f(x) if and only if (g,−1) defines a supporting hyperplane
to epi f at x.

We can replace t in this equation by any t̄ > t and still have (z, t̄) ∈ epi f . Thus, we cannot have
β > 0, since then by driving t̄ to +∞, (8.3) will fail to hold for t̄ sufficiently large. We cannot have
β = 0 either, since then by setting z = x+w in (8.3), we have that cTw ≤ 0 for all w with ‖w‖ ≤ ε,
which does not hold for w = εc/‖c‖. (Recall that c is nonzero.) Thus we must have β < 0, and by
setting t = f(z) in (8.3), rearranging, and dividing both sides by −β, we obtain

cT (z − x) ≤ −β(f(z)− f(x)) ⇒ f(z) ≥ f(x) + (−c/β)T (z − x),

which implies that −c/β is a subgradient of f at x.

Lemma 8.4 shows that when x is in the interior of the effective domain, the subdifferential ∂f(x)
is nonempty. The same condition implies that ∂f(x) is bounded and in fact compact, as we show
next.

Lemma 8.5. If x is in the interior of the effective domain of f , the subdifferential ∂f(x) is compact.

Proof. As in the proof of Lemma 8.4, there exists ε > 0 such that f(x + w) < ∞ for all ‖w‖ ≤ ε.
Suppose for contradiction that ∂f(x) is unbounded. Then we can choose a sequence {gk} with
gk ∈ ∂f(x) for all k = 1, 2, . . . and ‖gk‖ → ∞. Since all normalized vectors gk/‖gk‖ are in the unit
ball, which is compact, we can assume by taking a subsequence if necessary that gk/‖gk‖ → ḡ for
some ḡ with ‖ḡ‖ = 1. Note that gTk ḡ/‖gk‖ → 1, from which it follows that gTk ḡ → ∞. From the
definition of subgradient, we have

f(x+ εḡ) ≥ f(x) + εgTk ḡ, k = 1, 2, . . . ,
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so by driving k →∞, we deduce that f(x+ εḡ) =∞, yielding the contradiction.

We have proved boundedness. Since, as we remarked earlier, ∂f(x) is closed, compactness
follows, completing the proof.

If f is convex and differentiable at x, the subgradient coincides with the gradient.

Theorem 8.6. If f is convex and differentiable at x, then ∂f(x) = {∇f(x)}.

Proof. Differentiability of f implies that for all vectors d ∈ Rn with ‖d‖ = 1, we have f(x+ td) =
f(x) + t∇f(x)Td + o(|t|) (see (2.6)). In particular, f is finite at all points in the neighborhood of
x, so x is in the interior of the effective domain of f , so it follows from Lemma 8.4 that ∂f(x) is
nonempty.

Let v be an arbitrary vector in ∂f(x). From Definition 8.1 we have

f(x+ td) = f(x) + t∇f(x)Td+ o(t) ≥ f(x) + tvTd⇒ ∇f(x)Td+ o(t)/t ≥ vTd,
f(x− td) = f(x)− t∇f(x)Td+ o(t) ≥ f(x)− tvTd⇒ ∇f(x)Td+ o(t)/t ≤ vTd.

By combining these inequalities and taking t ↓ 0, we have that (v − ∇f(x))Td = 0 for all unit
vectors d, from which it follows immediately that v = ∇f(x).

A converse of this result is also true: If the subdifferential of a convex function f at x contains
a single subgradient, then f is differentiable with gradient equal to this subgradient (see [28,
Theorem 25.1]).

8.2 The Subdifferential and Directional Derivatives

We turn now to directional derivatives. Given a function f : Rn → R, the directional derivative of
f at x ∈ dom f in the direction v 6= 0 is denoted by f ′(x; v) and defined by

f ′(x; v) := lim
α↓0

f(x+ αv)− f(x)

α
. (8.4)

This definition holds for any function f , but our focus is again on convex functions here. 2 The
definition suggests that a direction v for which f ′(x; v) < 0 is a descent direction for f , and thus a
useful direction when our goal is to minimize f . In this context, note that directional derivatives
in all directions are nonnegative if and only if x∗ is a minimizer of f .

Theorem 8.7. Suppose that f is a convex function. Then for some x∗ ∈ dom f , f ′(x∗; v) ≥ 0 for
all v if and only if x∗ is a minimizer of f .

Proof. If x∗ is a minimizer of f , then f(x∗ + αv) ≥ f(x∗) for all α > 0 and all v, so it follows
directly from the definition (8.4) that f ′(x∗; v) ≥ 0. Conversely, suppose that x∗ is not a minimizer
of f . Then there exists some z∗ ∈ dom f with f(z∗) < f(x∗), and for any α ∈ (0, 1), we have

f(x∗ + α(z∗ − x∗)) ≤ (1− α)f(x∗) + αf(z∗),

2Note that the limit can be infinite when f is an extended-value convex function. For example, the convex function
f : R → R that has f(0) = 0 and f(t) = +∞ for t 6= 0 has f ′(0, v) = +∞ for all v 6= 0.
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and so
f(x∗ + α(z∗ − x∗))− f(x∗)

α
≤ f(x∗)− f(z∗) < 0, for all α ∈ (0, 1).

By taking limits as α ↓ 0 and using (8.4), we have f ′(x∗; z∗ − x∗) ≤ f(x∗)− f(z∗) < 0, completing
the proof.

In the remainder of this section, we explore the relationship between directional derivatives
and subgradients, showing that knowledge of the subgradient makes it possible to compute descent
directions for f .

For f convex, we have that the ratio in (8.4) is a nondecreasing function of α, that is

0 < α1 < α2 ⇒
f(x+ α1v)− f(x)

α1
≤ f(x+ α2v)− f(x)

α2
. (8.5)

(The proof is a consequence of the definition of convexity; see the Exercises.) We can thus replace
the definition (8.4) by

f ′(x; v) := inf
α>0

f(x+ αv)− f(x)

α
. (8.6)

It follows from these definitions that the directional derivative is additive, that is, for two convex
functions f1 and f2, we have

(f1 + f2)(x; v) = f1(x; v) + f2(x; v). (8.7)

Moreover, it is homogeneous with respect to the direction, that is,

f ′(x;λv) = λf ′(x; v), for all λ ≥ 0. (8.8)

(We leave proofs of these results as exercises.) Moreover, f ′(x; v), regarded as a function of v, for
fixed x, is a convex function. We see this from the following elementary argument: Given v1 and
v2 and γ ∈ (0, 1), consider f ′(x; γv1 + (1− γ)v2), for which we have

f ′(x; γv1 + (1− γ)v2) = lim
α↓0

f(x+ αγv1 + α(1− γ)v2)− f(x)

α

= lim
α↓0

f(γ(x+ αv1) + (1− γ)(x+ αv2))− γf(x)− (1− γ)f(x)

α

≤ lim
α↓0

γ(f(x+ αv1)− f(x)) + (1− γ)(f(x+ αv2)− f(x))

α

= γ lim
α↓0

f(x+ αv1)− f(x)

α
+ (1− γ) lim

α↓0

f(x+ αv2)− f(x)

α

= γf ′(x; v1) + (1− γ)f ′(x; v2).

It follows from the definition (8.4) and Taylor’s Theorem (specifically, (2.3)) that if f is differ-
entiable at x, we have for any v ∈ Rn that

f ′(x; v) = lim
α↓0

f(x+ αv)− f(x)

α

= lim
α↓0

∇f(x+ γαv)T (αv)

α
for some γ ∈ (0, 1)

= ∇f(x)T v.
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Thus in particular, we have

f ′(x; v) = −f ′(x;−v) when f is differentiable at x. (8.9)

This equality is not true for nonsmooth functions at points of nondifferentiability. For example,
the hinge loss function h(t) = max(t, 0) has h′(0; 1) = 1 but h′(0;−1) = 0. Similarly, the absolute
value funtion h(t) = |t| has h(0; 1) = 1 and h′(0,−1) = 1. We give a generalization of (8.9) in
Corollary 8.9 below.

It follows from the second definition (8.6) that f ′(x; v) has a property reminiscent of the sub-
gradient (compare with Definition 8.1):

f(x+ αv) ≥ f(x) + αf ′(x; v), for all α ≥ 0. (8.10)

Related to this observation, we can prove the following result.

Theorem 8.8. Suppose that x is in the interior of the effective domain of the convex function f .
Then for any v ∈ Rn, we have that

f ′(x; v) = sup
g∈∂f(x)

gT v. (8.11)

Proof. From (8.6), we have for any g ∈ ∂f(x) that

f ′(x; v) = inf
α>0

f(x+ αv)− f(x)

α
≥ inf

α>0

αgT v

α
= gT v,

so that
f ′(x; v) ≥ gT v for all g ∈ ∂f(x). (8.12)

Because ∂f(x) is closed, we obtain equality in (8.11) if we can find ĝ ∈ ∂f(x) such that
f ′(x; v) = ĝT v. For this, we use the convexity of f ′(x; y) with respect to its second argument y for
all y ∈ Rn (proved above). By Lemma 8.4, there exists a subgradient of f ′(x; ·) at v; let us call it
ĝ. By the definition of subgradient, together with (8.8), we have for all λ ≥ 0 and all y that

λf ′(x; y) = f ′(x;λy) ≥ f ′(x; v) + ĝT (λy − v). (8.13)

Letting λ ↑ ∞, we have that ĝT y ≤ f ′(x; y). By the definition (8.6), we have

f(x+ y)− f(x) ≥ inf
α>0

f(x+ αy)− f(x)

α
= f ′(x; y) ≥ ĝT y, for all y ∈ Rn,

which implies that ĝ ∈ ∂f(x), so by (8.12) we have that f ′(x; v) ≥ ĝT v. On the other hand, by
taking λ = 0 in (8.13), we have that f ′(x; v) ≤ ĝT v. Therefore, f ′(x; v) = ĝT v for this particular
ĝ ∈ ∂f(x), completing the proof.

An immediate corollary of this result leads to a generalization of (8.9).

Corollary 8.9. Suppose that x is in the interior of the effective domain of the convex function f .
Then for any v ∈ Rn, we have

f ′(x; v) ≥ −f ′(x;−v).
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Proof. From Theorem 8.8, we have

f ′(x;−v) = sup
g∈∂f(x)

gT (−v) = − inf
g∈∂f(x)

gT v ≥ − sup
g∈∂f(x)

gT v = −f ′(x; v).

We conclude with another result that relates subgradients to directional derivatives.

Theorem 8.10. Suppose that x ∈ dom f for the convex function f , and that there is some vector
g ∈ Rn such that for all v ∈ Rn, we have

f ′(x; v) ≥ gT v.

Then g ∈ ∂f(x).

Proof. By setting α2 = 1 and α1 ↓ 0 in (8.5) and using the definition (8.4), we have

gT v ≤ f ′(x; v) ≤ f(x+ v)− f(x), for all v ∈ Rn.

Thus, g satisfies the definition (8.2), so that g ∈ ∂f(x).

8.3 Calculus of Subdifferentials

In this section we describe the key properties of subdifferentials that are the key to calculating sub-
gradients. Unlike for differentiable functions, there are only a few key rules that are commonly used
in practice, involving positive combinations, combinations with linear mapping, and partial maxi-
mization. We collect these rules here in Theorems 8.11, 8.12, and 8.13. (Proofs of Theorems 8.11,
8.12 appear at the end of this section.)

We start with some elementary rules of subdifferential calculus.

Theorem 8.11. Supposing that f , f1, and f2 are convex functions and α is a positive scalar, the
following are true.

∂(f1 + f2)(x) ⊃ ∂f1(x) + ∂f2(x), (8.14)

∂(αf)(x) = α∂f(x). (8.15)

If, in addition, x is in the interior of the effective domain for both f1 and f2, then equality holds in
(8.14), that is, ∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x). In particular, if f1 and f2 are finite-valued convex
functions then ∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x) for all x.

We emphasize that the relationship in (8.14) is not an equality in general. We will see an
example of strict inclusion in the next section. However, equality holds in some interesting special
cases.3

The next result allows us to compute the subdifferential under affine transformations.

Theorem 8.12. [4, Theorem 4.2.5 (a)] Suppose that f : Rm → R is a convex function and define
h(x) := f(Ax + b) for some matrix A ∈ Rm×n and vector b ∈ Rm. Suppose that Ax + b is in the
interior of dom f . Then ∂h(x) = AT∂f(Ax+ b).

3See [8] for some other conditions that give rise to equality.
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The final result is Theorem 8.13, known as Danskin’s Theorem, which shows us how to compute
the subdifferential of a function that is defined as the pointwise maximum of a possibly infinite set
of functions. Such functions are ubiquitous objects in optimization, particularly in data analysis
applications.

The setup is as follows. Let I ⊂ Rn be a compact set. (Sets with finite cardinality are a useful
special case.) Let ϕ : Rd × I → R be a family of functions, continuous in (x, i), and assume that
each ϕ(·, i), i ∈ I, is convex. We define

f(x) := max
i∈I

ϕ(x, i) (8.16)

Note that f is convex, because it is the pointwise maximum of convex functions (see the Exercises).
Following Section 8.2, we denote the directional derivative of ϕ(·, i) at x in direction y by ϕ′(x, i; y).
For each x, we define Imax(x) to be the subset of I for which the maximum is achieved in (8.16),
that is,

Imax(x) := arg max
j∈I

ϕ(x, j) = {j : f(x) = ϕ(x, j)}. (8.17)

Note that Imax(x) is nonempty (by compactness of I) and compact for all x, by continuity of ϕ(x, ·)
with respect to its second argument. Danskin’s Theorem describes the directional derivatives and
subdifferentials of f .4

Theorem 8.13 (Danskin’s Theorem). (a) The directional derivative of f defined by (8.16) at x
in direction y is given by

f ′(x, y) = max
i∈Imax(x)

ϕ′(x, i; y) .

(b) If, in addition to the conditions on the function family ϕ stated above, we have that ϕ(·, i) is
a differentiable function of x for all i ∈ I, with ∇xϕ(x, ·) continuous on I for all x, then

∂f(x) = conv{∇xϕ(x, i) : i ∈ Imax(x)}.

We refer to [2, Section B.5] and [4, Proposition 4.5.1] for proofs of Theorem 8.13, which are quite
technical. We provide below proofs of Theorems 8.11 and 8.12. Generally speaking, one direction
of the inclusion is quite straightforward, while the other direcion requires a separating hyperplane
argument. Practitioners can skip these proofs, but we note that the arguments are of interest in
that they highlight some important structural aspects of convex optimization.

Proof of Theorem 8.11. The proofs of (8.14) and (8.15) are immediate consequences of the def-
initions of subgradients. For the case in which x is in the interior of both dom f1 and dom f2,
Lemmas 8.4 and 8.5 show that ∂f1(x), ∂f2(x), and ∂(f1 + f2)(x) are all nonempty, convex, and
compact sets. Suppose for contradiction that the inclusion (8.14) is strict in this case, that is, there
exists g ∈ ∂(f1 +f2)(x) such that g /∈ ∂f1(x)+∂f2(x). By the strict separation result Lemma A.13,
setting X = (∂f1(x) + ∂f2(x))− {g}, there is a vector t̄ ∈ Rn and a scalar α > 0 such that

t̄T (g1 + g2) ≤ t̄T g − α, for all g1 ∈ ∂f1(x) and all g2 ∈ ∂f2(x).

4Interestingly, this theorem first arose out of cold-war research by Danskin and appeared in a 1967 monograph
called The Theory of Max-Min and its Applications to Weapons Allocation Problems [12].
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From results about the relationship between subdifferentials and directional derivatives — (8.7)
and Theorem 8.8 — we have

(f1 + f2)(x; t̄) = f1(x; t̄) + f2(x; t̄) = sup
g1∈∂f1(x)

gT1 t̄+ sup
g2∈∂f2(x)

gT2 t̄ ≤ t̄T g − α < gT t̄.

Thus, by Theorem 8.8, we have g /∈ ∂(f1 + f2)(x), a contradiction.

When f1 and f2 are finite-valued, we have dom f1 = dom f2 = Rn, so that the effective domain
condition holds for all x ∈ Rn, and the result follows.

Proof of Theorem 8.12. Since Ax+ b is in the interior of dom f , x is in the interior of domh. Thus,
by Lemma 8.4 and 8.5, the subdifferentials ∂h(x) and ∂f(Ax+b) are nonempty and compact. From
the definition (8.4) of directional derivatives, it follows that

h′(x; y) = f ′(Ax+ b;Ay), for any y ∈ Rn.

From Theorem 8.8, we have for any z ∈ Rm that

gT z ≤ f ′(Ax+ b; z) for all g ∈ ∂f(Ax+ b).

By setting z = Ay, we have

(AT g)T y = gT (Ay) ≤ f ′(Ax+ b;Ay) = h′(x; y), for any y ∈ Rn.

It follows from Theorem 8.10 that AT g ∈ ∂h(x), and since this result holds for all g ∈ ∂f(Ax+ b),
we have that AT∂f(Ax+ b) ⊂ ∂h(x).

To prove equality, suppose for contradiction that there is a vector v ∈ ∂h(x) such that v /∈
AT∂f(Ax+ b). Since the set Ω := AT∂f(Ax+ b) is compact, we invoke the strict separation result
Theorem A.15 to deduce the existence of a vector y and a scalar β such that

yT (AT g) < β < yT v, for all g ∈ ∂f(Ax+ b).

It follows that

sup
g∈∂f(Ax+b)

(Ay)T g < yT v .

Theorem 8.8 then implies that

h′(x, y) = f ′(Ax+ b;Ay) < yT v,

contradicting the assumption that v ∈ ∂h(x) and completing the proof.

8.4 Convex Sets and Convex Constrained Optimization

In this section, we note the connections between closed convex sets and the indicator functions
for those sets (which are extended-value convex functions, that is, they may take infinite values at
some points).
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Let Ω ⊂ Rn be a convex set (see (2.13) for the definition of convexity). The indicator function
IΩ for a convex set Ω, defined by

IΩ(x) =

{
0 if x ∈ Ω,

∞ if x /∈ Ω.

This function is convex, extended-valued (except for the trivial case Ω = Rn), and has dom IΩ = Ω.
When Ω is a closed set, IΩ(x) is also lower-semicontinuous. We have the following result.

Theorem 8.14. For a closed convex set Ω ⊂ Rn, we have that NΩ(x) = ∂IΩ(x) for all x ∈ Ω.

Proof. Given v ∈ NΩ(x), we have

IΩ(y)− IΩ(x) = 0− 0 = 0 ≥ vT (y − x), for all y ∈ Ω = dom IΩ,

which implies that v ∈ ∂IΩ(x), by Definition 8.1. For the converse, suppose that v ∈ ∂IΩ(x), so we
have

0 = IΩ(y) ≥ IΩ(x) + vT (y − x) = vT (y − x), for all y ∈ Ω,

which implies that v ∈ NΩ(x), completing the proof.

In optimization, we often deal with sets that are intersections of closed convex sets. We have
the following result for normal cones of such intersections.

Theorem 8.15. Let Ωi, i = 1, 2, . . . ,m be closed convex sets and let Ω = ∩i=1,2,...,m Ωi. Then for
x ∈ Ω, we have

NΩ(x) ⊃ NΩ1(x) +NΩ2(x) + . . .+NΩm(x). (8.18)

Proof. This follows immediately from (8.14) when we make the identification in Theorem 8.14. For
a direct proof, we can proceed as follows. Consider vectors vi ∈ NΩi(x) for all i = 1, 2, . . . ,m,
and define v :=

∑m
i=1 vi. Let z be any point in the intersection Ω = ∩mi=1Ωi. Since z ∈ Ωi, we

have vTi (z − x) ≤ 0 for all i = 1, 2, . . . ,m, so that vT (z − x) = (
∑m

i=1 vi)
T (z − x) ≤ 0, and thus

v ∈ NΩ(x).

The following example, illustrated in Figure 8.2, shows that strict inclusion can hold in (8.18).
Define the following two convex subsets of R2:

Ω1 := {x ∈ R2 : x1 ≤ 0}, Ω2 := {x ∈ R2 : (x1 − 1)2 + x2
2 ≤ 1}, (8.19)

for which clearly Ω1 ∩ Ω2 = {0}. The normal cones at the interesting point 0 are

NΩ1(0) =

{[
v1

0

]
: v1 ≥ 0

}
, NΩ2(0) =

{[
v1

0

]
: v1 ≤ 0

}
, NΩ1∩Ω2(0) = R2. (8.20)

Since NΩ1(0) + NΩ1(0) = R × {0}, strict inclusion holds. Note that this example also shows that
strict including can hold in (8.14), when we identify the normal cones with indicator function
subdifferentials as in Theorem 8.14.

Additional conditions are sometimes assumed to ensure that equality holds in (8.18); these
conditions are called constraint qualifications. Some constraint qualifications are expressed in terms
of the geometry of the sets while others focus on their algebraic descriptions. One common theme

99



RECHT AND WRIGHT

1

N  (0)
Ω

1

N  (0)
Ω

2

Ω2

Ω

Figure 8.2: Example for which strict inclusion holds in (8.18).

among constraint qualifications is that a linear approximation of the sets near the point in question
needs to capture the essential geometry of the set itself in a neighborhood of the point. This is not
true of the example above, where the tangents (linear approximations) to Ω1 and Ω2 at x = 0 are
the vertical axis (so the intersection of their linear approximations is also the vertical axis), while
the intersection of the two sets is the single point {0}, so the linear approximation to this set is
simply {0}.

We conclude by applying Definition 7.1 to obtain optimality conditions for the convex con-
strained optimization problem

min
x∈Ω

f(x), where f is a smooth convex function and Ω ⊂ Rn is a closed convex set. (8.21)

Recall the definition for a solution of this problem, which follow (2.1). In particular, we say that
x∗ is a global solution of (8.21) if x∗ ∈ Ω and f(x) ≥ f(x∗) for all x ∈ Ω. (There may be multiple
values of x∗ that satisfy this definition; the set of all such values is convex; see the Exercises.) We
have the following characterization of optimality.

Theorem 8.16. The point x∗ ∈ Ω is a solution of (8.21) if and only if −∇f(x∗) ∈ NΩ(x∗).

Proof. Suppose that −∇f(x∗) ∈ NΩ(x∗). From Definition 7.1, we have

−∇f(x∗)T (y − x∗) ≤ 0 for all y ∈ Ω,

so by convexity of f , we have

f(y) ≥ f(x∗) +∇f(x∗)T (y − x∗) ≥ f(x∗),

proving that x∗ is a solution. Suppose instead that −∇f(x∗) /∈ NΩ(x∗). Then there is some y ∈ Ω
such that −∇f(x∗)T (y − x∗) > 0. By convexity of Ω, the point yα := x∗ + α(y − x∗) ∈ Ω for all
α ∈ [0, 1]. By Taylor’s theorem, in particular (2.3), we have that

f(yα) = f(x∗) +∇f(x∗ + γαα(y − x∗))T (y − x∗), for some γα ∈ (0, 1).
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By taking α sufficiently small in this expression we have by continuity of ∇f that ∇f(x∗+γαα(y−
x∗))T (y − x∗) < (1/2)∇f(x∗)T (y − x∗) < 0, so that f(yα) < f(x∗) for all α sufficiently small.
Therefore x∗ is not a solution of (8.21) when −∇f(x∗) /∈ NΩ(x∗).

Interestingly, because of the identity in Theorem 8.14, we can write the condition −∇f(x∗) ∈
NΩ(x∗) alternatively as follows:

0 ∈ ∇f(x∗) + ∂IΩ(x∗). (8.22)

Moreover, by (8.14) and Theorem 8.6, it is a consequence of (8.22) that

0 ∈ ∂ (f(x∗) + IΩ(x∗)) . (8.23)

From Theorem 8.2, this condition in turn is true if and only if x∗ is a minimizer of the “uncon-
strained” problem

min
x

f(x) + IΩ(x),

and we can see easily that this problem is equivalent to (8.21).

8.5 Optimality Conditions for Composite Nonsmooth Functions

We now consider first-order optimality conditions for functions of the form

φ(x) := f(x) + ψ(x), (8.24)

where f is a smooth function and ψ is (possibly) nonsmooth, convex and finite-valued. (Because of
the latter property, the effective domain of ψ is the entire space Rn, so we can apply such results as
Theorem 8.11.) This is a type of objective that we encounter often in machine learning applications;
see Chapter 1.

We deal first with the case in which f is convex too.

Theorem 8.17. When f is convex and differentiable and ψ is convex and finite-valued, the point
x∗ is a minimizer of φ defined in (8.24) if and only if 0 ∈ ∇f(x∗) + ∂φ(x∗).

Proof. By Theorem 8.6, we have that ∂f(x) = {∇f(x)}, so by using the fact that ψ(x) has effective
domain Rn and applying Theorem 8.11, we have

∂φ(x) = ∇f(x) + ∂ψ(x).

The result follows immediately from Theorem 8.2.

When f is strongly convex, the problem (8.24) has a minimizer and it is unique.

Theorem 8.18. Suppose that the conditions of Theorem 8.17 hold, and in addition that f is
strongly convex. Then the problem (8.24) has a unique solution.

For the more general case in which f is possibly nonconvex, we have a first-order necessary
condition.

Theorem 8.19. Suppose that f is differentiable and ψ is convex and finite-valued, and let φ be
defined by (8.24). Then if x∗ is a local minimizer of φ, we have that 0 ∈ ∇f(x∗) + ∂ψ(x∗).
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Proof. Supposing that 0 /∈ ∇f(x∗) + ∂ψ(x∗), we show that x∗ cannot be a local minimizer. We
define the following convex approximation to φ(x+ d):

φ̄(d) := f(x∗) +∇f(x∗)Td+ ψ(x∗ + d),

By differentiability of f we have that for all α ∈ [0, 1] and for any d that φ̄(αd) = φ(x+αd)+o(α|d|).
Since by assumption 0 /∈ ∂φ̄(0) = ∇f(x∗) + ∂ψ(x∗), we have from Theorem 8.2 that 0 is not a
minimizer of φ̄(d). Hence there exists d̄ with φ̄(d̄) < φ̄(0), so that the quantity c := φ̄(0)− φ̄(d̄) is
strictly positive. By convexity of φ̄, we have for all α ∈ [0, 1] that

φ̄(αd̄) ≤ φ̄(0)− α(φ̄(0)− φ̄(d̄)) = φ(x∗)− αc,

and therefore
φ(x∗ + αd̄) ≤ φ(x∗)− αc+ o(α|d|).

Therefore φ(x∗+αd̄) < φ(x∗) for all α > 0 sufficiently small, so x∗ is not a local minimizer of φ.

8.6 Proximal Operators and the Moreau Envelope

We define here the proximal operator that is a key component of algorithms for regularized opti-
mization, and analyze some of its properties in preparation for convergence analysis of proximal-
gradient algorithms in Section 9.5. The proximal operator is a powerful generalization of Euclidean
projections, and will allow us to greatly enhance our nonsmooth optimization toolbox.

For a closed proper convex function h we define the prox-operator of the h as

prox h(x) := arg min
u

{
h(u) +

1

2
‖u− x‖2

}
. (8.25)

Note that this is a well defined function because of the strong convexity of the Euclidean norm.
When h(x) = IΩ(x), the indicator function for a closed convex set Ω, prox IΩ(x) is simply the

Euclidean projection of x onto the set Ω, as we see from the following argument:

prox IΩ(x) = arg min
u

{
IΩ(u) +

1

2
‖u− x‖2

}
= arg min

u∈Ω

1

2
‖u− x‖2 .

Proximal operators are more general than Euclidean projections, but they satisfy a similar
nonexpansiveness property.

Proposition 8.20. Suppose h is a convex function. Then

‖prox h(x)− prox h(y)‖ ≤ ‖x− y‖

Proof. From optimality properties, we have from (8.25) that

0 ∈ λ∂h(prox λh(x)) + (prox λh(x)− x). (8.26)

Rearranging these expressions, at two points x and y, we have

x− prox h(x) ∈ ∂(prox h(x)), y − prox h(y) ∈ ∂(prox h(y)).
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Now, for a convex function f , it follows from the definition of subgradients that if a ∈ ∂f(x)
and b ∈ ∂f(y), we have (a− b)T (x− y) ≥ 0. By applying this inequality, we have

(1/λ)
(
(x− prox h(x))− (y − prox h(y))

)T
(prox h(x)− prox h(y)) ≥ 0,

which by rearrangement and application of the Cauchy-Schwartz inequality yields

‖prox h(x)− prox h(y)‖2 ≤ (x− y)T (prox h(x)− prox h(y)) ≤ ‖x− y‖ ‖prox h(x)− prox h(y)‖,

from which we obtain the proposition.

We note several special cases of the prox operator which are useful in later chapters.

• h(x) = 0 for all x, for which we have prox h(x) = 0. (Though trivial, this observation is
useful in proxing that the prox-gradient method of Chapter 9 reduces to the familiar steepest
descent method when the objective contains no regularization term.)

• h(x) = λ‖x‖1. By substituting into definition (8.25) we see that the minimization separates
into its n separate components, and that the ith component of prox λ‖·‖1 is

[prox λ‖·‖1 ]i = arg min
ui

{
λ|ui|+

1

2
(ui − xi)2

}
.

It is not hard to verify that

[prox λ‖·‖1(x)]i =


xi − λ if xi > λ;

0 if xi ∈ [−λ, λ];

xi + λ if xi < −λ,
(8.27)

an operator that is known as soft thresholding.

• h(x) = λ‖x‖0, where ‖x‖0 denotes the cardinality of the vector x, its number of nonzero
components. Although this h is not a convex function (as we can see by considering convex
combinations of the vectors (0, 1)T and (1, 0)T in R2), its prox-operator is well defined to be
the hard thresholding operation:

[prox λ‖·‖0(x)]i =

{
xi if |xi| ≥

√
2λ;

0 if |xi| <
√

2λ.

For the cardinality function, the definition (8.25) separates into n individual components, and
the fixed price of λ for allowing ui to be nonzero is not worth paying unless |xi| ≥

√
2λ.

We close this section by noting that the proximity operator is closely related to smooth approx-
imations of convex functions. For a closed proper convex function h and a positive scalar λ, we
define the Moreau envelope as

Mλ,h(x) := inf
u

{
h(u) +

1

2λ
‖u− x‖2

}
=

1

λ
inf
u

{
λh(u) +

1

2
‖u− x‖2

}
. (8.28)
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The prox-operator of the function λh is the value of u that achieves the infimum in (8.28).

The Moreau envelope can be seen as a smoothing of regularization of the function h. It has a
finite value for all x, even when h take on infinite values for some x ∈ Rn. In fact, it is differentiable
everywhere: Its gradient is

∇Mλ,h(x) =
1

λ
(x− prox λh(x)).

It is easy to check moreover that x∗ is a minimizer of h if and only if it is a minimizer of Mλ,h.

Sources and Further Reading

Some material of this chapter can be found in the lecture of [31] on “Subgradients.”

Further background on Moreau envelopes and the proximal mapping is given in [25].

Exercises

1. Prove that if f is convex and x ∈ dom f , the subdifferential ∂f(x) is closed and convex.

2. Prove (8.5) by applying the definition (2.14) of a convex function.

3. Show that any norm f(x) := ‖x‖ has 0 as a subgradient at x = 0, that is, 0 ∈ ∂f(0). Show
that f(x) is not differentiable at x = 0. (Reminder: A norm ‖ · ‖ has the properties that
(a) ‖x‖ = 0 if and only if x = 0; (b) ‖αx‖ = |α|‖x‖ for all scalars α and vectors x; (c)
‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y.)

4. Prove the additivity property (8.7) and the homogeneity property (8.8) of directional deriva-
tives.

5. For the following norm functions f over the vector space Rn, find ∂f(x) and f ′(x; v) for all x
and v:

(a) The `1 norm: f(x) = ‖x‖1;

(b) The `∞ norm: f(x) = ‖x‖∞;

(c) The `2 (Euclidean) norm: f(x) = ‖x‖2.

6. Show that the pointwise maximum function f defined by (8.16) is convex, under the stated
conditions on ϕ(x, i) for x ∈ Rd and i ∈ I, where I is a compact set.

7. Find the subdifferential of the piecewise linear convex function f : Rn → R defined by

f(x) = max
i=1,2,...,m

aTi x+ bi,

where ai ∈ Rn and bi ∈ R, i = 1, 2, . . . , n.

8. Prove the subdifferential calculus expressions (8.14) and (8.15).
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9. Suppose that f is defined as a maximum ofm convex functions, that is, f(x) := maxi=1,2,...,m fi(x),
where each fi is convex. Show that

∂f(x) =

 ∑
i : fi(x)=f(x)

λivi : vi ∈ ∂fi(x), λi ≥ 0,
∑

i : fi(x)=f(x)

λi = 1

 .

10. (a) Show that IΩ is a convex function if and only if Ω is a convex set.

(b) Show that Ω is a nonempty closed convex set if and only if IΩ(x) is a closed proper
convex function.

11. Show that the set of all solutions of (8.21) is a convex set.

12. Show that a closed proper convex function h and its Moreau envelope Mλ,h have identical
minimizers.

13. Calculate prox λh(x) and Mλ,h(x) for h(x) = 1
2‖x‖

2
2.
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