
Chapter 7

First-Order Methods for Constrained
Optimization

In constrained optimization, we aim to find a point x which achieves the smallest value of some
function f subject to the requirement that x lives in some specified set Ω.

Constrained optimization lets us design considerably more rich and complex optimization prob-
lems. The constraints could simply be bounds on the values of the variables, but could model
temporal dependencies, resource constraints, or statistical models. In this chapter, we will focus
on case when Ω is a simple convex set. We will move to more complicated scenarios in the later
chapters.

7.1 Optimality Conditions

We consider the problem (2.1), restate here as

min
x∈Ω

f(x), (7.1)

where Ω is closed and convex and f is smooth (at least differentiable). We recall material from
Chapter 2, including the definitions of (local and global) solutions from Section 2.1 and the defini-
tions of convexity and normal cones from Section 2.4.

In order to characterize optimality for minimizing a smooth function f over a closed convex set
Ω, we need a bit of additional machinery. Suppose all of the minimizers of f lie outside Ω. Then
the gradient of f will not vanish in Ω. Instead, the function will be decreasing as it pushes against
the boundary.

To make this notion rigorous, we first introduce the notion of a normal cone. We define the
normal cone to Ω at a point x ∈ Ω as follows.

Definition 7.1. Let Ω ⊂ Rn be a closed convex set. At any x ∈ Ω the normal cone NΩ(x) is
defined as

NΩ(x) = {d ∈ Rn : dT (y − x) ≤ 0 for all y ∈ Ω}.

(Note thatNΩ(x) satisfies trivially the definition of a cone C ∈ Rn, which is that z ∈ C ⇒ tz ∈ C
for all t > 0.) See Figure 7.1 for an example.)
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Figure 7.1: Normal Cone

Theorem 7.2. Consider the constrained optimization problem (7.1), where Ω ⊂ Rn is closed and
convex and f is continuously differentiable. If x∗ ∈ Ω is a local solution of (7.1), then −∇f(x∗) ∈
NΩ(x∗). If f is also convex, then the converse holds.

Proof. Suppose that x∗ is a local solution, and let z be any point in Ω. We have that x∗+α(z−x∗) ∈
Ω for all α ∈ [0, 1] and, by Taylor’s theorem (specifically (2.3)), we have

f(x∗ + α(z − x∗)) = f(x∗) + α∇f(x∗)T (z − x∗) + α [∇f(x∗ + γαα(z − x∗))]T (z − x∗)
= f(x∗) + α∇f(x∗)T (z − x∗) + o(α),

for some γα ∈ (0, 1). Since x∗ is a local solution, we have that f(x∗ + α(z − x∗)) ≥ f(x∗) for
all α > 0 sufficiently small. By substituting this inequality into the expression above, and letting
α ↓ 0, we have that −∇f(x∗)T (z − x∗) ≤ 0. Since the choice of z ∈ Ω was arbitrary, we conclude
that −∇f(x∗) ∈ NΩ(x∗), as required.

Suppose now that f is also convex, and that −∇f(x∗) ∈ NΩ(x∗). Then −∇f(x∗)T (z − x∗) ≤ 0
for all z ∈ Ω. By convexity of f , we have

f(z) ≥ f(x∗) +∇f(x∗)T (z − x∗) ≥ f(x∗),

verifying that x∗ minimizes f over Ω.

When f is strongly convex, the problem (7.1) has a unique solution.

Theorem 7.3. Suppose that in the problem (7.1), f is differentiable and strongly convex, while Ω
is closed, convex, and nonempty. Then (7.1) has a unique solution x∗, characterized by −∇f(x∗) ∈
NΩ(x∗).

Proof. The same technique as in the proof of Theorem 2.8 can be used to show existence of a
solution x∗. Theorem 7.2 tells us that −∇f(x∗) ∈ NΩ(x∗). Letting z be any other point in Ω, we
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have from the characterization (2.18) of strong convexity that

f(z) ≥ f(x∗) +∇f(x∗)T (z − x∗) +
m

2
‖z − x∗‖2 > f(x∗),

since ∇f(x∗)T (z − x∗) ≥ 0, m > 0, and z 6= x∗.

7.2 Euclidean Projection

Let Ω be a closed, convex set. The Euclidean projection of a point x onto Ω is the closest point in
Ω to x. Denote this point by ΠΩ(x). Note that ΠΩ(x) is the solution of a constrained optimization
problem:

ΠΩ(x) = arg min{‖z − x‖ : z ∈ Ω}

That is, ΠΩ(x) is the solution to the optimization problem

minimizez
1
2‖z − x‖

2

subject to z ∈ Ω
.

Since the cost function of this problem is strongly convex, this proves that ΠΩ(x) is unique for all
x.

Using the minimum principle, we can compute a variety of projections onto simple sets.

Example 1: The nonnegative orthant The nonnegative orthant is the set of vectors which
are nonnegative in all coordinates.

Ω = {x : xi ≥ 0 ∀ i = 1, . . . , d}

Note that Ω is a closed, convex cone.
Unpacking the condition 〈ΠΩ(x)− x, z −ΠΩ(x)〉 ≥ 0, we must have that

[ΠΩ(x)− x]i ≥ 0

for all coordinates. Note that simply setting

[ΠΩ(x)]i =

{
xi xi ≥ 0

0 xi < 0

satisfies the Minimum Principle.

Example 2: Unit norm ball Let

Ω = {x : ‖x‖ ≤ 1}

To compute ΠΩ(x), note that we require 〈ΠΩ(x)−x, z−ΠΩ(x)〉 ≥ 0. for all z ∈ Ω. One can readily
check that

ΠΩ(x) =
x

‖x‖
satisfies the Minimum Principle.
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One of the most useful properties of the Euclidean projection is the fact that projections are
nonexpansive in the following sense:

‖ΠΩ(x)−ΠΩ(y)‖ ≤ ‖x− y‖, for all x, y ∈ Rn. (7.2)

(See Proposition A.8 for a proof.)

7.3 The projected gradient algorithm

The projected gradient algorithm combines a projection step with a gradient step. This lets us
solve a variety of constrained optimization problems with simple constraints.

We will aim to solve the constrained optimization problem

minimize f(x)
subject to x ∈ Ω

(7.3)

where f is smooth and Ω is convex. Let us assume as usual that ∇f is Lipschitz so that ‖∇f(x)−
∇f(y)‖ ≤ L‖x− y‖.

Let us define a projected gradient scheme to solve this problem. Let α0, . . . , αT , . . . , be a
sequence of positive step sizes. Choose x0 ∈ X, and iterate

xk+1 = ΠΩ(xk − αk∇f(xk)) . (7.4)

The algorithm simply alternates between taking gradient steps and then taking projection steps.
The key idea behind this algorithm is summed up by the following proposition

Proposition 7.4. Let f be differentiable and convex and let Ω be convex. x? is an optimal solution
of (7.3) if and only if x? = ΠΩ(x? − α∇f(x?)) for all α > 0.

Proof. x? is an optimal solution if and only if 〈∇f(x?), x−x?〉 ≥ 0 for all x ∈ Ω. This is equivalent
to

〈x? − (x? − α∇f(x?)), x− x?〉 ≥ 0 ,

which, by the Minimum Principle is equivalent to x? being the Euclidean projection of x?−α∇f(x?)
onto Ω. In other words, x? = ΠΩ(x? − α∇f(x?)).

For non-convex f , we see that a fixed point of the projected gradient iteration is a stationary
point of h. We first analyze the convergence of this projected gradient method for arbitrary smooth
f , and then focus on strongly convex f .

7.3.1 General Case

Let f∗ denote the optimal value of (7.3). Suppose we set αk = 1/M for all k with M ≥ L. Then
we have

min
k≤T
‖xk+1 − xk‖ ≤

√
2(f(x0)− f?)
M(T + 1)

. (7.5)

This expression confirms that we will find a point x where

‖ΠΩ(x− α∇f(x))− x‖ ≤ ε .
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To verify this inequality, note that for any x, y,

f(x) = f(x) ≤ f(y) +∇f(y)T (x− y) +
M

2
‖x− y‖2 =: `(x; y)

for any M ≥ L. This is just Taylor’s series. Note that the minimizer of `(x; y) (with respect to x)
over Ω is equal to

ΠΩ(y − 1/M∇f(y)) .

and also note that `(x; y) is strongly convex with parameter M .
Now we have the chain of inequalities

f(xk)− f(xk+1) ≥ f(xk)− `(xk+1;xk)

= `(xk;xk)− `(xk+1;xk)

≥ M

2
‖xk+1 − xk‖2

Summing these inequalities up for k = 1, . . . , T , we have

T∑
k=0

‖xk+1 − xk‖2 ≤
2

M
(f(x0)− f?)

and the conclusion follows.

7.3.2 Strongly Convex Case

Let’s now assume that f is strongly convex with strong convexity parameter m:

f(z) ≥ f(x) +∇f(x)T (z − x) +
m

2
‖z − x‖2 . (7.6)

Let x? denote the optimal solution of (7.3). x? is unique because of strong convexity. Observe
that

‖xk+1 − x?‖ = ‖ΠΩ(xk − αk∇f(xk)−ΠΩ(x? − αk∇f(x?))‖ (7.7)

≤ ‖xk − αk∇f(xk)− x? + αk∇f(x?)‖ (7.8)

Here, the first equality follows by the definition of xk+1 and because x? is optimal (see Proposi-
tion 7.4). (7.8) follows from Proposition A.8.

Since f is strongly convex and has a Lipschitz continuous gradient, it follows that for all vectors
x and y and all positive scalars η

‖x− η∇f(x)− (y − η∇f(y))‖ ≤ max{|1− ηL|, |1− ηm|}‖x− y‖ . (7.9)

To see this, note that there exists a t̂ ∈ [0, 1] such that

‖x− η∇f(x)− (y − η∇f(y))‖ =
∥∥(I − η∇2f(x+ t̂(y − x))

)
(y − x)dt

∥∥ . (7.10)

From this, it follows that

‖x− η∇f(x)− (y − η∇f(y))‖ ≤ sup
z
‖I − η∇2f(z)‖‖y − z‖ . (7.11)
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Note that the minimum eigenvalue of ∇2f(z) is at least m and the maximum eigenvalue is at
least L. Therefore the eigenvalues of I − η∇2f(z) are at most max(1 − ηL, 1 − ηm) and at least
min(1− ηL, 1− ηm). Therefore, ‖I − η∇2f(z)‖ ≤ max(|1− ηL|, |1− ηm|).

Using the upper bound (7.9), we have

‖xk+1 − x?‖ ≤ max{|1− αkL|, |1− αkm|}‖x− y‖ . (7.12)

Note that αk = 2
L+m minimizes the right hand side for all k. Setting αk to this value, we find

that

‖xk+1 − x?‖ ≤
(
L−m
L+m

)
‖xk − x?‖ (7.13)

or, denoting κ = L
m and D0 = ‖x0 − x?‖,

‖xk − x?‖ ≤
(
κ− 1

κ+ 1

)k
D0 (7.14)

That is, for strongly convex f and arbitrary Ω, the projected gradient algorithm converges at a
linear rate under a constant step-size policy.

For the case where we lack strong convexity, we defer the analysis to Chapter 9 where we provide
a more general algorithm for nonsmooth optimization that reduces to projected gradient descent
as a special case.

7.3.3 Nesterov Iteration

We can even define an accelerated version of the projected gradient method. Iterations take the
form:

ξk+1 = ΠΩ (yk − α∇f(yk))

yk = ξk + β(ξk − ξk−1)
(7.15)

Note that when ΠΩ = I, we recover the standard Nesterov algorithm. When β = 0, we recover the
proximal gradient method. This method will converge in

O

(√
L

m
log(1/ε)

)

iterations for strongly convex functions. We leave a proof of this convergence rate as an exercise.

7.4 The Conditional Gradient (“Frank-Wolfe”) Method

Often times, the computation of the projection onto the set Ω is a very expensive operation.
Moreover, for many sets that arise in optimization, it is often considerably simpler to minimize a
linear objective over Ω than it is to project onto this set. For example, minimizing a linear objective
over the simplex simply requires extracting a maximum, whereas the Euclidean projection naively
requires sorting a list of numbers. The conditional gradient method, the first variant of which was
proposed by Frank and Wolfe [13], provides an effective algorithm for constrained optimization that
requires only linear minimization rather than Euclidean projection.
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Conditional gradient method replaces the objective in (7.3) by a linear Taylor-series approxi-
mation around the current iterate xk, and solves the following subproblem:

x̄k := arg min
x̄∈Ω

f(xk) +∇f(xk)T (x̄− xk) = arg min
x̄∈Ω
∇f(xk)T x̄. (7.16)

Note that the constraint set Ω is unchanged. The next iterate is obtained by steeping toward x̄k

from xk, as follows

xk+1 = xk + αk(x̄
k − xk), for some αk ∈ (0, 1]. (7.17)

Note that if the initial iterate x0 is feasible (that is, x0 ∈ Ω), all subsequent iterates xk, k = 1, 2, . . .
are also feasible, as are all the subproblem solutions x̄k, k = 0, 1, 2 . . . .

This method is practical when the linearized subproblem (7.16) is much easier to solve than the
original problem (7.3). As we have discussed, this is the case in many applications of interest.

The original Frank-Wolfe approach made the particular choice of step length αk = 2/(k + 2),
k = 0, 1, 2, . . . . The resulting method converges at a sublinear rate, as we show now. Again assume
that Ω ⊂ Rn is a closed, bounded convex set and f is a smooth convex function. We define the
diameter D of Ω as follows:

D := max
x,y∈Ω

‖x− y‖. (7.18)

Theorem 7.5. Suppose that f is a convex function whose gradient is Lipschitz continuously dif-
ferentiable with constant L on an open neighborhood of Ω, where Ω is a closed bounded convex set
with diameter D, and that solution x∗ to (7.3) exists. Then if algorithm (7.16)-(7.17) is applied
from some x0 ∈ Ω with steplength αk = 2/(k + 2), we have

f(xk)− f(x∗) ≤ 2LD2

k + 2
, k = 1, 2, . . . .

Proof. Since f has L-Lipschitz gradients, we have

f(xk+1) ≤ f(xk) + αk∇f(xk)T (x̄k − xk) +
1

2
α2
kL‖x̄k − xk‖2

≤ f(xk) + αk∇f(xk)T (x̄k − xk) +
1

2
α2
kLD

2, (7.19)

where the second inequality comes from the definition of D. For the first-order term, we have by
definition of x̄k in (7.16) and feasibility of x∗ that

∇f(xk)T (x̄k − xk) ≤ ∇f(xk)T (x∗ − xk) ≤ f(x∗)− f(xk).

By substituting this bound into both sides of (7.19) and subtracting f(x∗) from both sides, we have

f(xk+1)− f(x∗) ≤ (1− αk)[f(xk)− f(x∗)] +
1

2
α2
kLD

2.

We now demonstrate the required bound by induction. By setting k = 0 and substituting α0 = 1,
we have

f(x1)− f(x∗) ≤ 1

2
LD2 <

2

3
LD2,
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as required. For the inductive step, we suppose that the claim holds for some k, and demonstrate
that it still holds for k + 1. We have

f(xk+1)− f(x∗) ≤
(

1− 2

k + 2

)
[f(xk)− f(x∗)] +

1

2

4

(k + 2)2
LD2

= LD2

[
2k

(k + 2)2
+

2

(k + 2)2

]
= 2LD2 (k + 1)

(k + 2)2

= 2LD2k + 1

k + 2

1

k + 2

≤ 2LD2k + 2

k + 3

1

k + 2
=

2LD2

k + 3
,

as required.

Note that the same result holds if we choose αk to exactly minimize f along the line from xk

to x̄k; only minimal changes to the proof are needed.

Notes and References

Pointer to proof of Nesterov’s method with projection.
Homework: projection and linear optimization on the simplex

Exercises

1. Exercise
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