
Chapter 6

Coordinate Descent Methods

Some of the earliest approaches for multivariable optimization proceeded by optimizing with respect
to one variable at a time, and cycling repeatedly through the full set of variables. This approach,
known as coordinate descent (CD) has a certain intuitive appeal: It replace the difficult problem of
minimizing with respect to many variables with a sequence of simpler scalar optimization problems.
There are many variants and extensions of the basic CD approach that have gone in and out of
style over the years. Nowadays there is considerable interest, driven largely by the usefulness of
CD methods in data analysis problems.

The kth of coordinate descent applied to a function f : Rn → R chooses some index ik ∈
{1, 2, . . . , n}, and takes a step of the form

xk+1 ← xk + γkeik , (6.1)

where eik is the ik unit vector and γk is the step. In one CD variant, also known as the Gauss-Seidel
method), γk is chosen to minimize f along direction eik , that is,

γk := arg min
γ

f(xk + γeik).

In the most popular CD variants, γk is chosen to be a multiple of the negative partial gradient of
with respect to xik (denoted by ∇ikf), that is,

xk+1 ← xk − αk∇ikf(xk)eik , (6.2)

for some αk > 0. Different variants of CD are distinguished by different techniques for choosing ik
and αk. The common theme is that all are descent methods, that is, they ensure that f(xk+1) <
f(xk) for all k.

6.1 Coordinate Descent in Machine Learning

In deciding whether CD is a plausible approach for minimizing f , relative to alternative approaches
such as the gradient methods of Chapters 3 and 4, we need to consider carefully the properties
and structure of f . We note first that CD methods almost invariably make use of partial gradient
information about f at each step. That is, if CD chooses to update component ik of x at the
current iteration k, it needs information about the gradient (or subgradient) of f with respect to

71

RECHT AND WRIGHT

the component xik to help decide how far to move along the ik coordinate direction. If the cost
of computing this single component of gradient information is not much less that computing the
full gradient at xk, there is no good reason to use CD; we are better off applying an algorithm
that exploits more full the full-gradient information. However, there are important applications in
machine learning and other areas, in which it is much less expensive to compute a single gradient
component than a full gradient. Two such examples follow.

6.1.1 Coordinate Descent for Empirical Risk Minimization

Consider the objective that arises in regularized regression, classification, and ERM problems:

f(x) =
1

m

m∑
j=1

φj(A
T
j·x) + λ

n∑
i=1

Ωi(xi),

where each φj is a convex loss, Aj· denotes the jth row of the m × n matrix A, the functions Ωi,
i = 1, 2, . . . , n are convex component-wise regularization functions, and λ ≥ 0 is a regularization
parameter. (We assume that the functions φj and Ωi are all differentiable, for now.) Although
it is expensive to compute “from scratch” the ith component of the gradient (∇if), it is easy to
maintain and update information from one iteration of CD to the next that make this task easy
and inexpensive. The trick is to maintain in storage the vector g = Ax for the current x, along
with the scalars ∇φj(gj), j = 1, 2, . . . ,m. Using this information, the ith element of the gradient
can be obtained from the following formula:

∇if(x) =

m∑
j=1

Aj,i∇φj(gj) + λ∇Ωi(xi),

where Aj,i denotes the (j, i) element of the matrix A. However, we note that the terms in the
summation need be evaluated only for those indices j for which Aj,i is nonzero, that is,

∇if(x) =
∑

j:Ai,j 6=0

Aj,i∇φj(gj) + λ∇Ωi(xi).

When A is sparse, this computation can be performed cheaply, in O(|A·i|) operations, where A·i is
the ith column of A. (The number of operations required to compute the full gradient would be
proportional to the number of nonzeros in the full matrix A.) However, we still need to verify that
the cost of updating the quantities gj := ATj·x and ∇φj(gj), j = 1, 2, . . . ,m following a step along
the coordinate direction xi is reasonable. Indeed, this is the case. If we update x by taking a step
di along coordinate direction i, the update formulae for gj are:

gj ← gj +Aj,idi, j = 1, 2, . . . ,m,

so it is necessary to update only those gj (and ∇φj(gj)) for which Aj,i 6= 0—a total workload of
O(|Ai·|) operations. Thus, considering all possible choices of components i = 1, 2, . . . , n, we see
that the average cost per iteration of CD is about O(|A|/n), where |A| is the number of nonzeros
in A, whereas the cost per iteration of a gradient method would be O(|A|). It is this difference
in complexity—a factor of 1/n difference between the iteration costs—that makes CD potentially
appealing relative to gradient methods.

Note that the least-squares problem min 1
2m‖A

Tx− b‖22 is special case of this example. (We see
this by defining φj(gj) = 1

2(gj − bj)2.)

72

OPTIMIZATION FOR MODERN DATA ANALYSIS

6.2 Objective functions arising from graphs

Many optimization can be written as a linear combination of functions that only involve pairs
of variables coupled due to some graph structure. For example, problems in image segmentation
might couple adjacent pixels. In topic modeling, terms that appear in the same document may be
coupled.

Consider an undirected graph G = (V,E) where the edges (j, l) ∈ E connect two vertices j and
l from V = {1, 2, . . . , n}. Suppose our objective has the following form, where each component xi
of the variable x ∈ Rn is associated with vertex i:

f(x) =
∑

(j,l)∈E

fj,l(xj , xl) + λ
n∑
j=1

Ωj(xj),

where fjl (for all (j, l) ∈ E) and the regularization functions Ωj (for j = 1, 2, . . . , n) are all differ-
entiable. Evaluation of the functiion f and the full gradient ∇f would be an O(|E|) operation (if
we assume that evaluation of each fjl and ∇fjl is O(1)). To implement a CD method efficiently,
we could store the values of fjl and ∇fjl at the current x, for all (j, l) ∈ E. To compute the ith
gradient component ∇if(x), we need to sum components from the terms ∇fjl(x) for which j = i
or l = i (at a total cost proportional to the number of edges incident on vertex i) and evaluate
the term ∇Ωi(xi). In updating the values of fjl and ∇fjl after the step in xi, we need again only
change those components for which j = i or l = i. The “expected” cost of one CD iteration is thus
O(|E|/n). We see once again the desired 1/n relationship between the cost per iteration of CD and
the cost per iteration of a gradient method.

6.3 Coordinate Descent for Smooth Convex Functions

We again develop most of the ideas with reference to the familiar smooth convex minimization
problem defined by

min
x∈Rn

f(x), (6.3)

where f is smooth and convex, with modulus of convexity µ and a bound L on the Lipschitz
constant of the gradient for all points x in some region of interest; see (2.18) and (2.7). We showed
in Lemmas 2.3 and 2.9 that, in the case of f twice continuously differentiable, these conditions are a
consequence of uniform bounds on the eigenvalues of the Hessian (2.9), that is, µI � ∇2f(x) � LI.
Because the variants we consider here are mostly descent methods, it is enough to restrict our
attention in these definitions to an open neighborhood O0 of the level set of f for the starting point
x0, which is L0 := {x | f(x) ≤ f(x0)}.

We introduce other partial Lipschitz constants for the function f and its gradient. We define
each componentwise Lipschitz constant Li, i = 1, 2, . . . , n to satisfy the bound

|∇if(x+ αei)−∇if(x)| ≤ Li|α|, i = 1, 2, . . . , n, (6.4)

for all x, α such that x ∈ O0 and x+ αei ∈ O0, while we define

Lmax := max
i=1,2,...,n

Li. (6.5)

73

RECHT AND WRIGHT

The “restricted” Lipschitz constant Lres satisfies

‖∇f(xi + αei)−∇f(xi)‖ ≤ Lres|α|, i = 1, 2, . . . , n. (6.6)

Note that for f twice continuously differentiable, we have that

[∇2f(x)]ii ≤ Li, ‖[∇2f(x)]·i‖ ≤ Lres, for all x ∈ Oo and i = 1, 2, . . . , n,

where A·i denotes the ith column of the matrix A.

These Lipschitz constants play important roles both in implementing variants of CD and it
analyzing its convergence rates, especially in comparing these rates with those of full-gradient
methods. We can obtain some bounds on the difference between L and Lmax by considering the
convex quadratic function f(x) = (1/2)xTAx where A is symmetric positive semidefinite. We have
that L = ‖A‖2 = λmax(A), while from the definition of Lmax we have Lmax = maxi=1,2,...,nAii. It
is clear from definition of matrix norm that

L ≥ ‖Aei‖/‖ei‖ =

√√√√ n∑
j=1

A2
ji ≥ Aii,

so by taking the max of both sides, we have L ≥ Lmax. (Equality holds for any nonnegative diagonal
matrix.) On the other hand, we have by the relationship between trace and sum of eigenvalues
(A.3) that

L = λmax(A) ≤
n∑
i=1

λi(A) =
n∑
i=1

Aii ≤ nLmax.

(Equality holds for the matrix A = eeT , where e = (1, 1, . . . , 1)T . Thus, we have

Lmax ≤ L ≤ nLmax. (6.7)

6.3.1 Stochastic CD

In the basic stochastic coordinate descent (SCD) approach, the index ik to be updated is selected
uniformly at random from {1, 2, . . . , n}, and the iterations have the form (6.2) for some αk > 0.
For “short-step” methods, in which αk is determined by the Lipschitz constants rather than by an
exact minimization or line-search process, we show that sublinear convergence rates can be attained
for convex functions and linear convergence rates for strongly convex functions (µ > 0 in (2.18)).
Later, we dicuss how this rate relates to the rates obtained in Chapter 3 for full-gradient, steepest
descent methods.

For precision, we make the following assumption for the remainder of this section. We make
use here of the level set L0 and its open neighborhood O0 defined above.

Assumption 1. The function f is convex and uniformly Lipschitz continuously differentiable on
the set O0 defined above, and attains its minimum on a set S. There is a finite positive number R0

for which the following bound is satisfied:

max
x∗∈S

max
x∈L0

‖x− x∗‖ ≤ R0.

74

OPTIMIZATION FOR MODERN DATA ANALYSIS

In the analysis that follows, we denote expectation with respect to a single random index ik by
Eik(·), while E(·) denotes expectation with respect to all random variables i0, i1, i2,

We prove a convergence result for the randomized algorithm, for the simple steplength choice
αk ≡ 1/Lmax.

Theorem 6.1. Suppose that Assumption 1 holds, that each index ik in the iteration (6.2) is selected
uniformly at random from {1, 2, . . . , n}, and that αk ≡ 1/Lmax. Then for all k > 0 we have

E(f(xk))− f∗ ≤ 2nLmaxR
2
0

k
. (6.8)

When µ > 0 in (2.18), we have in addition that

E
(
f(xk)

)
− f∗ ≤

(
1− µ

nLmax

)k
(f(x0)− f∗). (6.9)

Proof. By application of Taylor’s theorem, and using (6.4) and (6.5), we have

f(xk+1) = f
(
xk − αk∇ikf(xk)eik

)
≤ f(xk)− αk[∇ikf(xk)]2 +

1

2
α2
kLik [∇ikf(xk)]2

≤ f(xk)− αk
(

1− Lmax

2
αk

)
[∇ikf(xk)]2

= f(xk)− 1

2Lmax
[∇ikf(xk)]2, (6.10)

where we substituted the choice αk = 1/Lmax in the last equality. Taking the expectation of both
sides of this expression over the random index ik, we have

Eikf(xk+1) ≤ f(xk)− 1

2Lmax

1

n

m∑
i=1

[∇if(xk)]2

= f(xk)− 1

2nLmax
‖∇f(xk)‖2. (6.11)

(We used here the facts that xk does not depend on ik, and that ik was chosen from among
{1, 2, . . . , n} with equal probability.) We now subtract f(x∗) from both sides this expression, take
expectation of both sides with respect to all random variables i0, i1, . . . , and use the notation

φk := E(f(xk))− f∗. (6.12)

to obtain

φk+1 ≤ φk −
1

2nLmax
E
(
‖∇f(xk)‖2

)
≤ φk −

1

2nLmax

[
E(‖∇f(xk)‖)

]2
. (6.13)

(We used Jensen’s Inequality in the second inequality.) By convexity of f we have for any x∗ ∈ S
that

f(xk)− f∗ ≤ ∇f(xk)T (xk − x∗) ≤ ‖∇f(xk)‖‖xk − x∗‖ ≤ R0‖∇f(xk)‖,

75

RECHT AND WRIGHT

where the final inequality is obtained from Assumption 1, because f(xk) ≤ f(x0), so that xk ∈ L0.
By taking expectations of both sides, we have

E(‖∇f(xk)‖) ≥ 1

R0
φk.

When we substitute this bound into (6.13), and rearrange, we obtain

φk − φk+1 ≥
1

2nLmax

1

R2
0

φ2
k.

We thus have
1

φk+1
− 1

φk
=
φk − φk+1

φkφk+1
≥ φk − φk+1

φ2
k

≥ 1

2nLmaxR2
0

.

By applying this formula recursively, we obtain

1

φk
≥ 1

φ0
+

k

2nLmaxR2
0

≥ k

2nLmaxR2
0

,

so that (6.8) holds, as claimed.

In the case of f strongly convex with modulus µ > 0, we have by taking the minimum of both
sides with respect to y in (2.18), and setting x = xk, that

f∗ ≥ f(xk)− 1

2µ
‖∇f(xk)‖2.

By using this expression to bound ‖∇f(xk)‖2 in (6.13), we obtain

φk+1 ≤ φk −
µ

nLmax
φk =

(
1− µ

nLmax

)
φk.

Recursive application of this formula leads to (6.9).

Note that the same convergence expressions can be obtained for more refined choices of steplength
αk, by making minor adjustments to the logic in (6.10). For example, the choice αk = 1/Lik leads
to the same bounds (6.8) and (6.9). The same bounds hold too when αk is the exact minimizer of
f along the coordinate search direction; we modify the logic in (6.10) for this case by taking the
minimum of all expressions with respect to αk, and use the fact that αk = 1/Lmax is in general a
suboptimal choice.

We can compare the convergence rates in Theorem 6.1 with the corresponding rates for full-
gradient short-step methods from Sections 3.2. In comparing (6.8) with the corresponding result
for full-gradient descent with constant steplength αk = 1/L (where L is from (2.7)). The iteration

xk+1 = xk − 1

L
∇f(xk)

leads to a convergence expression

f(xk)− f∗ ≤ 2LR2
0

k
(6.14)

76

OPTIMIZATION FOR MODERN DATA ANALYSIS

(see, for example, [21]). Since, for problems of interest in this chapter, there is roughly a factor-of-
n difference between one iteration of CD and one iteration of a full-gradient method, the bounds
(6.14) and (6.8) would be comparable if L and Lmax are approximately the same. The bounds
(6.7) suggest that Lmax can be significantly less than L for some problems, and by comparing the
convergence expressions, we see that randomized CD may have an advantage in such cases.

A similar conclusion is reached when we compare the convergence rates on the strongly convex
case. We have for steepest-descent with line search α ≡ 2/(L+ µ) (see Section 3.2) that

‖xk+1 − x∗‖ ≤
(

1− 2

(L/µ) + 1

)
‖xk − x∗‖. (6.15)

Because of Lemma 3.4, the quantities f(xk)−f(x∗) and ‖xk−x∗‖2 converge at similar rates, so we
get a more apt comparison with (6.9) by squaring both sides of (6.15). By using the approximation
(1− ε)m ≈ 1−mε for any constants m and ε with mε� 1, we estimate that the rate constant for
convergence of {f(xk)} in short-step steepest descent would be about

1− 4µ

L+ µ
≈ 1− 4µ

L
, (6.16)

because we can assume that L+µ ≈ L for all but the most well conditioned problems. Apart from
the extra factor of 4 in (6.16), and the expected factor-of-n difference between the key terms, we
note again that the main difference is the replacement of Lmax in (6.9) by L in (6.16). Again, we
note the possibility of a faster overall rate for CD when Lmax is significantly less than L.

6.3.2 Cyclic CD

Cyclic variants of CD, where we update the coordinates in a fixed order, repeatedly cycling through
them all until convergence, are perhaps the most intuitive form of the algorithm. The classi-
cal Gauss-Seidel method, popular also for linear systems of equations, has this form, with the
steplengths chosen to minimize f exactly along each search direction. Other variants do not mini-
mize exactly but rather take steps of the form (6.2), with αk chosen according to estimates of the
Lipschitz properties of the function, and other considerations.

The choice of index ik in cyclic CD is as follows:

ik = (kmodn) + 1, k = 0, 1, 2, . . . , (6.17)

giving the sequence 1, 2, 3, . . . , n, 1, 2, 3, . . . , n, 1, 2, 3,
Surprisingly, results concerning the convergence of cyclic variants for smooth convex f have

been proved only recently [1]. (Results for the special case of Gauss-Seidel applied to a convex
quadratic f , and its important symmetric over-relaxation (SOR) variant, have been the subjects
of research in the numerical linear algebra community for many years.) We describe a result with
a flavor similar to Theorem 6.1. We assume a fixed steplength α is used at every iteration, where
α ≤ 1/Lmax.

Theorem 6.2. Suppose that Assumption 1 holds, and that the iteration (6.2) is applied with the
index ik at iteration k chosen according to the cyclic ordering (6.17) and αk ≡ α ≤ 1/Lmax. Then
for k = n, 2n, 3n, . . . , we have

f(xk)− f∗ ≤ (4n/α)(1 + nL2α2)R2
0

k + 8
. (6.18)

77

RECHT AND WRIGHT

When µ in the strong convexity condition (2.17) is strictly positive, we have in addition for k =
n, 2n, 3n, . . . that

f(xk)− f∗ ≤
(

1− µ

(2/α)(1 + nL2α2)

)k/n
(f(x0)− f∗). (6.19)

Proof. The result (6.18) follows from [1, Theorems 3.6 and 3.9] when we note that (i) each iteration
of Algorithm BCGD in [1] corresponds to a “cycle” of n iterations of (6.2); (ii) we update coordinates
rather than blocks, so that the parameter p in [1] is equal to n; (iii) we set L̄max and L̄min in [1]
both to 1/α, which is greater than or equal to Lmax, as required by the proofs in this reference.

The cyclic CD approach would seem to have an intuitive advantage over the full-gradient steep-
est descent method, if we compare a single cycle of cyclic CD to one step of steepest descent.
Cyclic CD is making use of the most current gradient information whenever it takes a step along
a coordinate direction, whereas steepest descent evaluates the moves along all n coordinates at the
same value of x. This advantage is not reflected in the worst-case analysis of Theorem 6.2, however,
which suggest slower convergence than full-gradient steepest descent, even when we assume that
the cost per iteration differs by O(n) between the two approaches (see details below). Indeed, the
proof in [1] treats the cyclic CD method as a kind of perturbed steepest descent method, bounding
the change in objective value over one cycle in terms of the gradient at the start of the cycle.

The bounds (6.18) and (6.19) are generally worse than the corresponding bounds (6.8) and (6.9)
obtained for the randomized algorithm, as we explain in a moment. Computational comparisons
between randomized and cyclic methods show similar performance on many problems, but as a
comparison of the bounds suggests, cyclic methods perform worse (sometimes much worse) when
the ratio L/Lmax exceeds its lower bound on 1 significnatly. We note also that the bounds (6.18)
and (6.19) are deterministic, whereas (6.8) and (6.9) are bounds on expected error.

We illustrate the results of Theorem 6.2 with three possible choices for α. Setting α to upper
lower bound of 1/Lmax, we have for (6.18) that

f(xk)− f∗ ≤ 4nLmax(1 + nL2/L2
max)R2

0

k + 8
.

The numerator here is worse than the corresponding result (6.8) by a factor of approximately
2nL2/L2

max ∈ [2n, 2n3], suggesting better performance for the randomized method, with a larger
advantage on problems for which Lmax � L. If we set α = 1/L (a legal choice, since L ≥ Lmax),
(6.18) becomes

4n(n+ 1)LR2
0

k + 8
,

which is worse by a factor of approximately 2n2 than the bound (6.14) for the full-step gradient
descent approach. For α = 1/(

√
nL), we obtain

8n3/2LR2
0

k + 8
,

which still trails (6.14) by a factor of 4n3/2. If we take into account the factor-of-n difference in
cost between iterations of CD and full-gradient methods for problems of interest, these differences
shrink to factors of n and n1/2, respectively.

78

OPTIMIZATION FOR MODERN DATA ANALYSIS

6.3.3 Coordinate Sampling Without Replacement

An important variant of CD is a kind of hybrid of the randomized and cyclic approaches. As in the
cyclic approach, we divide the computations into a cycles of n iterations each, where each within
each cycle, every coordinate is updated exactly once. Unlike the cyclic approach, however, we
reshuffle the coordinates at each cycle. (Equivalently, we can think of each cycle as sampling the
coordinates from the set {1, 2, . . . , n} without replacement.) Unlike the fully randomized method,
this variant “touches” each component exactly once per cycle, whereas in the randomized CD ap-
proach it is possible (though unlikely) that a given coordinate xi will not be updated for arbitrarily
many iterations.

The convergence properties proved in Theorem 6.2 continue to hold for this variant; the proofs
in [1] need no modification. Curiously, however, computational experience shows that this variant
avoids the poor behavior of the purely cyclic variant in cases for which the ratio L/Lmax is large. In
general, its performance is quite similar to that of “sampling with replacement” stochastic approach
of Section 6.3.1.

Notes and References

Mention the Lee-Sidford versions of accelerated CD.
The proof of Theorem 6.1 is a simplified version of the analysis in Nesterov [22, Section 2].
Analysis of the cyclic method in Section 6.3.2 is drawn from [1].
The justification for using CD methods as opposed to full-gradient methods is perhaps seen

best in asynchronous implementations on parallel computers. Multiple cores can of course share
the workload of evaluating a full gradient, but there is inevitably a synchronization point—the
computation ust wait for all cores to complete their share of the work before it can proceed with
computing and taking the step. Asynchronous implementations of CD methods are extremely
easy to design, especially for multicore, shared-memory computers in which all cores have access
to a shared version of the variable x (and possibly other quantities involved in the evaluation of
gradient information). Strong results about the convergence of asynchronous algorithms under weak
assumptions were obtained in [3, Section 7.5]. Recently, Liu et al. [19], Liu and Wright [17] showed
that convergence rates of the serial CD methods are largely inherited by multicore implementations
provided that the number of cores is not too large.

Exercises

1. In the example of Section 6.1.1, assume that the objective function f is known at the current
point x, along with the quantity g = Ax. Show that the cost of computing f(x+ gammaiei)
for some i = 1, 2, . . . , n is O(|A·i|)—the same order as the cost of updating the gradient ∇f .
Show that a similar observation holds for the example in Section 6.2.

2. Consider the convex quadratic f(x) = (1/2)xTAx with A = eeT , where e = (1, 1, . . . , 1)T ,
for which L = n and Lmax = Li = 1 for i = 1, 2, . . . , n. Show that any variant of CD with
α = 1/Lmax or α = 1/Li converges in one iteration. Show that steepest descent (with either
exact line search or step length α = 1/L) also converges in one step.

3. Implement the following variants of coordinate descent:

79

RECHT AND WRIGHT

• Stochastic (the method of Section 6.3.1) with exact line search and with constant step
length 1/Lmax;

• Cyclic (Section 6.3.2) with exact line search and with constant step lengths 1/Lmax, 1/L,
and 1/(

√
nL);

• “Sampling without replacement” (Section 6.3.3) with exact and with constant step length
1/Lmax.

Compare the performance of these methods on convex quadratic problems f(x) = 1
2x

TAx,
where A is an n×n positive semidefinite matrix constructed randomly in the manner described
below. (Note that x∗ = 0 with f(x∗) = 0.) Terminate when f(x) ≤ 10−6f(x0). Use a random
starting point x0 whose components are uniformly distributed in [0, 1]. Compute and print
the values of L and Lmax for each instance.

Test your code on the following matrices A.

(i) A = QTDQT , where Q is random orthogonal and D is a positve diagonal matrix whose
here each diagonal Dii has the form 10−ζi , where each ζi is drawn uniformly i.i.d. from
[0, 1].

(ii) The same as in (i), but with each ζi drawn uniformly i.i.d. from [0, 2].

(iii) Generate the matrix A as in (i), them replace it by A+ 5E, where E is the n×n matrix
whose components are all 1.

Discuss the relative performance of the methods on these different problems. How is your
computational experience consistent (or inconsistent) with the convergence expressions ob-
tained in Theorems 6.1 and 6.2?

4. Compare the linear convergence bounds (6.9) and (6.19) for the stochastic and cyclic variants
of CD, for various choices of steplength in the cyclic method, including α = 1/Lmax, α = 1/L,
and α = 1/(

√
nL). (In making these comparisons, note that for small ε we have (1− ε)1/n ≈

1− ε/n.) Which of these choices of fixed step length α in the cyclic method is optimal, in the
sense of approximately minimizing the factor on the right-hand side of (6.19)?

80

