
Chapter 5

Stochastic Gradient Methods

The stochastic gradient method (SGM) is one of the most popular algorithms in modern data
analysis and machine learning. It has a long history, with variants having been invented and
reinvented several times by different communities, under such names as “least mean squares,”
“back propagation,” “online learning,” and the “randomized Kaczmarz method.” Most people
attribute the stochastic gradient approach to the 1951 work of Robbins and Monro [27], who were
interested in devising efficient algorithms for computing random means and roots of scalar functions
for which only noisy values are available. In this chapter, we explore some of the properties and
implementation details of the SGM.

As before, our goal is to minimize the multivariate convex function f : Rd → R, which we
assume to be smooth for purposes of this discussion. Extension to the nonsmooth convex case is
straightforward, and left as an exercise in the chapter on nonsmooth methods. The SGM differs
from methods of Chapters 3 and 4 in the kind of information that is available about f . In place of
an exact value of ∇f(x), we assume that we can compute or acquire a vector g(x, ξ) ∈ Rd, which
is a function of a random variable ξ as well as x, such that

∇f(x) = Eξ[g(x, ξ)]. (5.1)

We assume that ξ belongs to some space Ξ with distribution P , and Eξ denotes the expectation
taken over ξ ∈ Ξ according to distribution P . The SGM proceeds by substituting g(x, ξ) for the
true gradient ∇f in the steepest-descent update formula, so each iteration is as follows:

xk+1 = xk − αkg(xk, ξk), (5.2)

where the random variable ξk is chosen according to the distribution P (independently of the
choices at other iterations) and αk > 0 is the steplength. The method steps in a direction that in
expectation equals the steepest descent direction. Although g(xk, ξk) may differ substantially from
∇f(xk) — it may contain a lot of “noise” — it also contains enough “signal” to make progress
toward the optimal value of f over the long term. In typical applications, computation of the
gradient estimate g(xk, ξk) is much cheaper than computation of the true gradient ∇f(xk).

The choice of steplength αk is critical to the theoretical and practical behavior of the SGM.
We cannot expect to match the performance of steepest descent, in which we move along the
true negative gradient direction −∇f(xk) rather than its noisy approximation −g(xk, ξk). In the
steepest descent method, the constant steplength αk ≡ 1/L (where L is the Lipschitz constant

53

RECHT AND WRIGHT

for ∇f) yields convergence; see Chapter 3. We can show that this constant-steplength choice will
not yield the same convergence properties in the stochastic gradient context, by considering what
happens if we initialize the method at the minimizer of f , that is, x0 = x∗. Since ∇f(x∗) = 0,
there are no descent directions, and the methods of Chapter 3 will generate a zero step — as they
should, since we are already at a solution. The stochastic gradient direction g(x0, ξ0) may however
be nonzero, causing the SGM to step away from the solution (and increase the objective). We
can show however that for judicious choice of the steplength sequence {αk}, the sequence {xk}
converges to x∗, or at least to a neighborhood of x∗, at rates that are typically slower than those
achieved by (true-)gradient descent.

5.1 Examples and Motivation

There are many situations in which the SGM is a powerful tool. Here we discuss a few motivating
examples that drive our subsequent implementation details and theoretical analyses.

5.1.1 Noisy Gradients

The simplest application of the SGM is to the case when the gradient estimate g(x, ξ) is the true
gradient with additive noise, that is,

g(x, ξ) = ∇f(x) + ξ, (5.3)

where ξ is some noise process. The unbiasedness property (5.1) will hold provided that E(ξ) = 0.
Our analysis below reveals a protocol for choosing step sizes αk so that the SGM (5.4) converges.
Formula (5.4) reduces in this case to

xk+1 = xk − αk(∇f(xk) + ξk). (5.4)

5.1.2 Incremental Gradient Method

The incremental gradient method, also known as the perceptron or back-propagation, is one of the
most common variants of the SGM. Here we assume that f has the form of a finite sum, that is,

f(x) =
1

n

n∑
i=1

fi(x). (5.5)

where n is usually very large. Computing a full gradient ∇f generally requires computation of
∇fi, i = 1, 2, . . . , n — a computation that scales proportionally to n in general. Iteration k of the
incremental gradient procedure selects some index ik from {1, . . . , n} and computes

xk+1 = xk − αk∇fik(xk).

That is, we choose one of the functions fi and follow its negative gradient. The standard incremental
gradient method chooses ik to cycle through the components {1, 2, . . . , n} in order, that is, we set
ik = (k mod n) + 1 for k = 0, 1, 2, An alternative is to choose ik according to some random
procedure at each iteration. The latter approach is a special case of stochastic gradient. We see
this by defining the random variable space Ξ to be the set of indices {1, 2, . . . , n}, and the choice of

54

OPTIMIZATION FOR MODERN DATA ANALYSIS

random variable ξk at iteration k is an index ik, so that g(xk, ξk) = ∇fik(xk). Here, the distribution
P is such that P (i) = 1/n for all i = 1, 2, . . . , n. The unbiasedness property (5.1) holds, since

Eξ(g(x, ξ)) =
1

n

∑
i=1

∇fi(x) = ∇f(x).

The convergence analysis of the randomized incremental gradient / stochastic gradient method
is straightforward, as we will see. Surprisingly, analysis of the original variant of incremental
gradient, in which indices ik are chosen in a deterministic, cyclic order, is more challenging, and
the convergence guarantees are weaker.

5.1.3 Classification and the Perceptron

Classification is a canonical problem in machine learning. We are provided data consisting of pairs
(xi, yi), with xi ∈ Rd and yi ∈ {−1, 1} for i = 1, . . . n. The goal is to find a vector w ∈ Rd such that

wTxi > 0 for yi = 1, wTxi < 0 for yi = −1.

Ideally, w defines a line with all positive examples on one side and all negative examples on the
other. (Often, the division is not so clean — there is no line that perfectly separates the two classes
— but we can still search for a w that most nearly achieves this goal.)

A popular algorithm for finding w called the perceptron was invented in the 1950s. It uses one
example at a time to generate a sequence {wk}, k = 1, 2, . . . from some starting point w0. At
iteration k, we choose one of our data pairs (xik , yik) and update according to the formula

wk+1 = (1− γ)wk +

{
ηyikxik if yik(wk)Txik < 1

0 otherwise,
(5.6)

for some positive parameters γ and η. The idea behind this iteration is that if the current guess wk

classifies the pair (xik , yik) incorrectly, then we “nudge” wk in a way that makes (wk)Txik closer to
the correct sign. If wk produces correct classification on this example, we do not change it.

This method is an instance of the SGM. A quick calculation shows that this procedure is
obtained by applying the SGM to the cost function

1

n

n∑
i=1

max
(
1− yixTi w, 0

)
+
λ

2
‖w‖22 , (5.7)

where ξk is the index ik of a single term from the summation. In the update equation (5.6), we
have chosen γ = (ηλ)/n where αk ≡ η is the stepsize parameter. (In machine learning, the stepsize
is often referred to as the learning rate.) The cost function (5.7) is often called the Support Vector
Machine. In the parlance of our times, the perceptron algorithm is equivalent to “training” a
support vector machine using the SGM.

5.1.4 Empirical Risk Minimization

In machine learning, the Support Vector Machine is one of many instances of the class of optimiza-
tion problems called Empirical Risk Minimization. Many classification, regression, and decision

55

RECHT AND WRIGHT

tasks can be evaluated as expected values of error over the data-generating distributions. The most
common example is known as statistical risk. Given a data generating distribution p(x, y), and a
loss function `(u, v) we define the risk as

R[f] := E[`(f(x), y)], (5.8)

where the expectation is over the data space (x, y) according to probability distribution p(x, y).
The function ` measures the cost of assigning the value f(x) when the quantity to be estimated
is y. (Typically ` becomes larger when f(x) deviates further from y.) The quantity R is the
expected loss of the decision rule f(x) with respect to the probability distribution p(x, y) of the
data. The goal of many learning tasks is to choose the function f that minimizes the risk. For
example, the Support Vector Machine uses a hinge loss for the function `, that measures the
distance between the prediction wTx and the correct half-space. In regression problems, y is a
target variate, and the loss measures the difference between f(x) and y according to the square
function `(f(x), y) = (1/2)(f(x)− y)2.

Often, minimization of the risk is computationally intractable and depends strongly on knowing
the likelihood and prior models for the data pairs (x, y). A popular alternative uses samples to
provided an estimate for the true risk. Suppose we have a process that generates independent, iden-
tically distributed (i.i.d.) samples (x1, y1), (x2, y2), . . . , (xn, yn) from the joint distribution p(x, y).
For these data points and a fixed decision rule x̂(y), we can expect that the empirical risk

Remp[f] :=
1

n

n∑
i=1

`(f(yi), xi) (5.9)

is “close” to the true risk. Indeed, Remp[f] is a random variable equal to the sample mean of the
loss function. If we take the expectation with respect to our samples, we have

E[Remp[f]] = R[f] .

Given these samples, the empirical risk is no longer a function of the likelihood and prior models.
We have obtained a simpler optimization problem, in which the objective is a finite sum — a form
like that of (5.5). Minimizing this empirical risk corresponds to finding the best function f that
minimizes the average loss over our data sample.

The SGM and empirical risk minimization (ERM) are intimately related. One variant of ERM
formulates the problem finitely as (5.9) and then applies the randomized incremental gradient
approach of Section 5.1.2 to this function. Another variant does not explicitly take a finite data
sample, instead applying the SGM directly to (5.8). At each step, a pair (x, y) is sampled according
to the distribution p(x, y), and a step is taken along the negative gradient of loss function ` with
respect to f , evaluated at the point (f(x), y). 1

The perceptron algorithm is a particular instance of ERM, in which we define f(x) = wTx (so
that f is parametrized by the vector w) and `(f(x), y) = max(1− yxTw, 0).

5.2 Insights into Randomness and Steplength

Before turning to a rigorous analysis of the SGM, it will be useful to get some background and
insight into how to choose the stepsize parameters. We consider some simple but informative
examples.

1SJW: Is this a fair summary? I am not sure I have the terminology right.

56

OPTIMIZATION FOR MODERN DATA ANALYSIS

5.2.1 Example: Computing a Mean

Let us consider applying an incremental gradient method to the scalar function

f(x) :=
1

2n

n∑
i=1

(x− ωi)2 (5.10)

where ωi are n fixed scalars. This function has the form of the finite sum (5.5) when we define
fi(x) = (1/2)(x− ωi)2, so that

∇fi(x) = x− ωi .
Consider first the deterministic method in which we work through the component functions in
order, starting with x0 = 0 and using the stepsize αk = 1/(k + 1). The first few iterations are:

x1 = x0 − (x0 − ω1) = ω1,

x2 = x1 − 1

2

(
x1 − ω2

)
=

1

2
ω1 +

1

2
ω2,

x3 = x2 − 1

3

(
x2 − ω3

)
=

1

3
ω1 +

1

3
ω2 +

1

3
ω3,

so that

xk =

(
k − 1

k

)
xk−1 +

1

k
ωk =

1

k

k∑
j=1

ωj , k = 1, 2, (5.11)

The stepsize αk = 1/(k + 1) was the one originally proposed by Robbins and Monro [27], and it
makes perfect sense for this simple example, as it produces iterates that are the running average of
all the samples ωj encountered so far. The 1/k step has two other important features.

• Even when the gradients g(x; i) = ∇fi(x) are bounded in norm, the iterates can traverse an
arbitrary distances across the search space, because

∑∞
k=0 1/(k+ 1) =∞. Thus, convergence

can be obtained even when the starting point x0 is arbitrarily far from the solution x∗.

• The steplengths shrink to zero, so that when the iterates reach a neighborhood of the solution
x∗, they tend to stay there, even though the search directions g(x; ξ) contain noise.

For this simple example, the global minimum of f is found after n steps of the cyclic, incremental
method — there is no need for randomness. In fact, the SGM applied to (5.10) is unlikely to converge
in a finite number of iterations. There are however some cases in which randomness produces much
better performance than cyclic schemes, or other scheme in which deterministic choices are made
of the samples ωi, as we see in the next section.

Let us consider now a “continuous” version of (5.10):

f(x) = 1
2Eω[(x− ω)2], (5.12)

where ω is some random variable with mean µ and variance σ2. At step j of the SGM, we select
some value ωj+1 from the distribution of ω, independently of the choices of ω that were made at
previous iterations. We take a step of length 1/(j+1) in direction xj−ωj+1. After k steps, starting
from x0 = 0, we have as above that

xk =
1

k

k∑
j=1

ωj .

57

RECHT AND WRIGHT

By plugging this value into (5.12), and taking the expectation over ω and all the random variables
ω1, ω2, . . . , ωj , we obtain

f(xk) = 1
2Eω1,ω2,...,ωk,ω

1

k

k∑
j=1

ωj − ω

2 =
1

2k
σ2 +

1

2
σ2. (5.13)

In this simple case too, we can compute the minimizer of (5.12) exactly. We have

f(x) = 1
2E[x2 − 2ωx+ ω2] = 1

2x
2 − µx+ 1

2σ
2 + 1

2µ
2 .

Thus the minimizer of f is x∗ = µ, with f(x∗) = 1
2σ

2. By comparing this value with (5.13), we
have

f(xk)− f(x∗) =
1

2k
σ2.

Statistically speaking, it can be shown that xk is the highest-quality estimate that can be attained
for x∗ given the sequence {ω1, ω2, . . . , ωk}. Interestingly, the SGM, which considered the samples
ωj+1 one at a time and made a step after each iteration, is able to achieve the same quality
as an estimator that made use of the complete set of data {ω1, ω2, . . . , ωk} at once. Even so,
the convergence rate for this best-possible performance is sublinear: The sequence of differences
between function values and their optimum {f(xk) − f∗} shrinks like 1/k, rather than decreasing
exponentially to zero. This demonstrates a fundamental limitation of the SGM: Linear convergence
cannot be expected in general. Statistics, not computation or algorithm design, stands in the way
of linear convergence rates.

5.2.2 The (Randomized) Kaczmarz Method

The potential benefits of randomness can be seen when we consider a special case of the following
linear least squares problem:

min f(x) :=
1

2n

n∑
i=1

(
aTi x− bi

)2
, (5.14)

where ‖ai‖ = 1, i = 1, 2, . . . , n. Assume that there exists an x∗ such that aTi x
∗ = bi for i =

1, 2, . . . , n. This point will be a minimizer of f , with f(x∗) = 0. The SGM with stepsize αk ≡ 1 —
known as the randomized Kaczmarz method — yields the recursion

xk+1 = xk − aik
(
aTikx

k − bik
)

= xk − aika
T
ik

(xk − x∗).

Aggregating the effects of the first k iterations, we obtain

xk+1 − x∗ =
(
I − aika

T
ik

) (
xk − x∗

)
=

k∏
j=0

(
I − aijaTij

) (
x0 − x∗

)
.

Iteration k is a projection of the current iterate xk onto the plane defined by aTikx = bik . If two

successive subspaces are close to one another, xk+1 and xk are close together, and we do not make

58

OPTIMIZATION FOR MODERN DATA ANALYSIS

Figure 5.1: Kaczmarz method. Deterministic, ordered choice (left) leads to slow convergence;
randomized Kaczmarz (right) converges faster.

much progress toward x∗. The following example describes a set of vectors {a1, a2, . . . , an} such
that the sequential ordering of aik , k = 0, 1, 2, . . . (that is, i0 = 1, i1 = 2, i2 = 3, . . .) yields slow
progress, while much faster convergence is attained by making random choices of ik for each k.

For n ≥ 3, set ωn := π/n and define the vectors ai as follows:

ai =

[
cos (iωn)
sin (iωn)

]
, i = 1, 2, . . . , n. (5.15)

Define bi = 0, i = 1, 2, . . . , n, so that the solution of (5.14) is x∗ = 0. We have that ‖ai‖ = 1 for
all i, and in addition that 〈ai, ai+1〉 = cos(ωn) for 1 ≤ i ≤ n− 1. The matrices Ai := I − aiaTi are
positive semidefinite for all i, and we have the identity

Ej(Aj) =
1

n

n∑
i=1

Ai = 1
2I . (5.16)

Any set of unit vectors satisfying (5.16) is called a normalized tight frame, and the vectors (5.18)
form a harmonic frame, due to their trigonometric origin.

Consider a randomized version of the Kaczmarz method, in which we select the vector aik with
equal likelihood from among {a1, a2, . . . , an}, with the choice made independently at each iteration.
The expected decrease in error over iteration k, conditional on the value of xk, is

Eik(xk+1 − x∗ |xk) =
(
Eik(I − aika

T
ik

)
)

(xk − x∗) = 1
2(xk − x∗), (5.17)

where we used (5.16) to obtain the fraction of 1/2. The following argument shows exponential
decrease of the expected error with rate (1/2) per iteration:

E(xk − x0)

= Ei0,i1,...,ik−1

k−1∏
j=0

Aij (x
0 − x∗) =

k−1∏
j=0

Eij (Aij)

 (x0 − x∗) =
[
Eij (Aij)

]k
(x0 − x∗) = 2−k(x0 − x∗) .

59

RECHT AND WRIGHT

The critical step of taking the expectation inside the product is possible because of independence
of the ij , j = 0, 1, . . . , k − 1.)

The behavior of randomized Kaczmarz is shown in the right diagram in Figure 5.1, with the
path traced by the iterations shown as a dotted line.

Why do we attain linear convergence for the randomized method, when the example of the
previous subsection attained only a sublinear rate? The answer is that the solution x∗ is a fixed
point of both a gradient map and a stochastic gradient step. That is, both ∇f(x) and ∇fi(x)
approach zero as x→ x∗, for all i = 1, 2, . . . , n. (For the same reason, we were able to use a large
constant stepsize αk ≡ 1 rather than the usual decreasing stepsize.)

The fact that the vectors aik are selected randomly, for k = 0, 1, 2, . . . is also critical to the
fast convergence. If we use a deterministic order ik = k + 1, k = 0, 1, 2, . . . , n− 1, the convergence
analysis is quite different. Define the vectors

âi =

[
sin (−iωn)
cos (−iωn)

]
, (5.18)

and note that Ai = I − aiaTi = âiâ
T
i . We have

k∏
i=1

Ai = âkâ
T
1

k−1∏
j=1

〈âj , âj+1〉 = âkâ
T
1 cosk−1 (ωn) .

We therefore have

‖xk − x∗‖ =

∥∥∥∥∥
k∏
i=1

(
I − aiaTi

) (
x0 − x∗

)∥∥∥∥∥ = cosk−1 (ωn)
∣∣âT1 (x0 − x∗

)∣∣ .
For x0 = (0, 1)T , we have âT1 (x0 − x∗) = ‖x0 − x∗‖, so

‖xk − x∗‖ = cos(−π/n)k−1‖x0 − x∗‖, k = 0, 1, 2, . . . , n.

This indicates geometric convergence, at a rate of cos(−π/n) ≈ 1 − (1/2)(π/n)2 per iteration
— a much slower rate than the rate of 1/2 achieved in the randomized case. (This analysis is
deterministic, unlike that of the randomized case, which yields a bound only on the decrease in the
excepted error.)

The deterministic variant is plotted in the left diagram of Figure 5.1, which shows a slow spiral
toward the solution.

The randomized Kaczmarz method was analyzed some years ago by signal processing re-
searchers, independently of the long standing work on the SGM.

5.3 Convergence Analysis: Key Assumptions

We now turn to convergence analysis of the SGM, applied to the convex function f : Rd → R,
with steps of the form (5.4) and search directions g(x, ξ) satisfying condition (5.1). To prove
convergence, we need to assume some bounds on the sizes of the gradient estimates g(x, ξ), so that
the information they contain is not swamped by arbitrarily large amounts of noise. We assume
that there are nonnegative constants Lg and B such that

Eξ
[
‖g(x; ξ)‖22

]
≤ L2

g‖x− x∗‖2 +B2 for all x. (5.19)

60

OPTIMIZATION FOR MODERN DATA ANALYSIS

Note that this assumption may be satisfied even when g(x; ξ) is arbitrarily large for some com-
bination of x and ξ; formula (5.19) requires only boundedness in expectation over ξ for each x.
(Subsection 5.3.3 below contains an example in which ξ is unbounded but (5.19) still holds for
suitable choices of Lg and B.)

Note that when Lg = 0 in (5.19), f cannot be strongly convex over an unbounded domain. If
f were strongly convex function with modulus of convexity m, we would have

‖∇f(x)‖ ≥ m

2
‖x− x∗‖

for all x. On the other hand, we have by Jensen’s inequality that

‖∇f(x)‖2 ≤ E[‖g(x; ξ)‖2].

These two bounds together imply that it is not possible to find a B for which (5.19) holds with
Lg = 0, if the domain of f is unbounded.

When f has the finite-sum form (5.5) and we have ∇fik(xk) as the gradient estimate at iterate
xk, where ik chosen uniformly at random from {1, 2, . . . , n}, as in Subsection 5.1.2, the bound (5.19)
specializes to

1

n

n∑
i=1

‖∇fi(x)‖2 ≤ L2
g‖x− x∗‖2 +B2 for all x. (5.20)

The steplengths αk in the stochastic gradient iteration formula (5.4) typically depend on the
constants Lg and B in (5.19). Throughout, we will assume that the sequence {ξk}k=0,1,2,... needed
to generate the gradient approximations g(xk, ξk) is selected i.i.d. from a fixed distribution. (It is
possible to weaken the i.i.d. assumptions, but we do not consider such extensions here.)

We now examine how the constants Lg and B appear in different problem settings, including
those described in earlier sections.

5.3.1 Case 1: Bounded Gradients: Lg = 0

Suppose that the stochastic gradient function g(·; ·) is bounded almost surely for all x — that is,
Lg = 0 in (5.19). This is true for the logistic regression objective

f(w) =
1

n

n∑
i=1

−yiwTxi + log(1 + exp(wTxi)) (5.21)

where yi ∈ {0, 1}. Following the finite-sum setting (5.5), the random variable ξ is drawn uniformly
from the set {1, 2, . . . , n}, and

g(w; i) =
(
−yi + exp(wT xi)

1+exp(wT xi)

)
xi

Thus (5.19) holds with Lg = 0 and B = supi=1,2,...,n ‖xi‖2.

61

RECHT AND WRIGHT

5.3.2 Case 2: Randomized Kaczmarz: B = 0, Lg > 0

Consider the least-squares objective (5.14), where we assume that ai 6= 0 but not necessarily
‖ai‖ = 1 for each i. Assume that there is x∗ for which f(x∗) = 0, that is, aTi x

∗ = bi for all
i = 1, 2, . . . , n. By substituting into (5.14), we obtain

f(x) =
1

2n

n∑
i=1

(x− x∗)TaiaTi (x− x∗)

and, with the random variable ξ being drawn uniformly from {1, 2, . . . , n}, we have

g(x; i) = aia
T
i (x− x∗).

For the expected norm, we have

E[‖g(x; i)‖2] = E[‖ai‖2|aTi (x− x∗)|2] ≤ E[‖ai‖4]‖x− x∗‖2,

so that (5.19) can be satisfied by setting Lg = E[‖ai‖4]1/2 and B = 0.

5.3.3 Case 3: Additive Gaussian Noise

Consider the additive noise model (5.3) where ξ is from the Gaussian distribution with mean zero
and covariance σ2I, that is, ξ ∈ N(0, σ2I). We have E[g(x; ξ)] = ∇f(x) and

E[‖g(x; ξ)‖2] = ‖∇f(x)‖2 + 2∇f(x)TE(ξ) + E(‖ξ‖2) = ‖∇f(x)‖2 + dσ2. (5.22)

We can satisfy (5.19) by setting B = σ
√
d, and defining Lg to the Lipschitz constant of the gradient

of f (because ‖∇f(x)‖2 ≤ ‖∇f(x)−∇f(x∗)‖2 ≤ L2‖x− x∗‖2).

5.3.4 Case 4: Incremental Gradient

Consider the finite-sum formulation (5.5) in which the gradient ∇fi of each term in the sum has
Lipschitz constant Li. As in Subsection 5.1.2, the distribution for the random variable ξ is discrete
with n equally likely choices corresponding to the indices i = 1, 2, . . . , n of the terms in the sum.
For the ith term fi(x), we define x∗i to be any point for which ∇fi(x∗i) = 0. We then have

Eξ[‖g(x; ξ)‖2] = Ei[‖∇fi(x)‖2]

≤ E[L2
i ‖x− x∗i‖2]

≤ E
[
2L2

i ‖x− x∗‖2 + 2L2
i ‖x∗i − x∗‖2

]
=

2

n

n∑
i=1

L2
i ‖x− x∗‖2 +

2

n

n∑
i=1

L2
i ‖x∗i − x∗‖2 ,

where we used the bound ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. Thus (5.19) holds if we define

L2
g =

2

n

n∑
i=1

L2
i , B2 =

2

n

n∑
i=1

L2
i ‖x∗i − x∗‖2 .

There is nice intuition for this choice of B. If x∗i = x∗ for all i, then B = 0, as in the case of
Randomized Kaczmarz (Subsection 5.3.2). (The term L2

g in the derivation above is also smaller by
a factor of 2.)

62

OPTIMIZATION FOR MODERN DATA ANALYSIS

5.4 Convergence Analysis

Our convergence results track the decrease in certain measures of error as a function of iterations.
These measures are of two types. The first is an expected squared error in the point x, that is
E
[
‖x− x∗‖2

]
, where x∗ is the solution and the expectation is taken over all the random variables ξk

encountered to that point of the algorithm. This measure is most appropriate when the objective
f is strongly convex, so that the solution x∗ is uniquely defined. The second measure of optimality
is the gap between the current objective value and the optimal value, that is f(x) − f(x∗). This
measure can be used when f is convex but not necessarily strongly convex. In the strongly convex
case, each of these two measures can be bounded in terms of the other, with the bound depending
on the Lipschitz constant for ∇f and the modulus of convexity m.

We see that the suitable choices of steplengths αk in (5.4) depend on Lg and B, and that the
convergence rates also depend on these two quantities.

We begin by expanding the distance to the optimal solution, as follows:

‖xk+1 − x∗‖2 = ‖xk − αkg(xk; ξk)− x∗‖2

= ‖xk − x∗‖2 − 2αk〈g(xk; ξk), x
k − x∗〉+ α2

k‖g(xk; ξk)‖2 (5.23)

We deal with each term in this expansion separately. We take the expectation of both sides with
respect to all the random variables encountered by the algorithm up to and including iteration k,
namely i0, i1, . . . , ik. By applying the law of iterated expectation, and noting that xk depends on
ξ0, ξ1, . . . , ξk−1 but not on ξk, we obtain

E[〈g(xk; ξk), x
k − x∗〉] = E

[
Eξk [〈g(xk; ξk), x

k − x∗〉 | ξ0, ξ1, . . . , ξk−1]
]

= E
[
〈Eξk [g(xk; ξk) | ξ0, ξ1, . . . , ξk−1], xk − x∗〉

]
= E

[
〈∇f(xk), xk − x∗〉

]
.

In the last step of this derivation, we used the fact that g(xk; ξk) depends on ξk, while xk does not,
so we took the expectation of g(xk; ξk) explicitly with respect to ξk, to obtain ∇f(xk).

By a similar argument, we can bound the last term in (5.23) by using (5.19):

E[‖g(xk; ξk)‖22] = E
[
Eξk [‖g(xk; ξk)‖22 | ξ0, ξ1, . . . , ξk−1]

]
≤ E[L2

g‖xk − x∗‖22 +B2].

By defining the squared expected error as

ak := E[‖xk − x?‖2], (5.24)

we obtain by substituting these relationships into (5.23) that

ak+1 ≤ (1 + α2
kL

2
g)ak − 2αkE

[
〈∇f(xk), xk − x∗〉

]
+ α2

kB
2 . (5.25)

Our results follow from different manipulations of (9.2) for different settings of Lg and B. We
proceed through several cases.

63

RECHT AND WRIGHT

5.4.1 Case 1: Lg = 0.

When Lg = 0, the expression (9.2) reduces to

ak+1 ≤ ak − 2αkE
[
〈∇f(xk), xk − x∗〉

]
+ α2

kB
2 . (5.26)

Define λk to be the sum of all stepsizes up to and including iteration k, and x̄k to be the average
of all iterates so far, weighted by the stepsizes αj , that is,

λk =
k∑
j=0

αj , x̄k = λ−1
k

k∑
j=0

αjx
j .

We analyze the deviation of f(x̄k) from optimality. Given the initial point x0, which we assume to
now be random, we define D0 := ‖x0 − x∗‖ to be the initial squared error. (Note from (5.24) that
a0 = D2

0.) After T iterations, we have the following estimate for x̄T :

E[f(x̄T)− f(x∗)] ≤ E

λ−1
T

T∑
j=0

αj(f(xj)− f(x∗))

 (5.27a)

≤ λ−1
T

T∑
j=0

αjE[〈∇f(xj), x∗ − xj〉] (5.27b)

≤ λ−1
T

T∑
j=0

[
1
2(aj − aj+1) + 1

2α
2
jB

2
]

(5.27c)

=
1

2
λ−1
T

a0 − aT+1 +B2
T∑
j=0

α2
j

≤
D2

0 +B2
∑T

j=0 α
2
j

2
∑T

j=0 αj
. (5.27d)

Here, (5.27a) follows from convexity of f and the definition of x̄T ; (5.27b) again uses convexity of
f ; and (5.27c) follows from (5.26).

With the bound (5.27d) in hand, we can prove the following result for the case of constant
stepsizes: αk ≡ α > 0 for all k.

Proposition 5.1 ([20]). Suppose we run the SGM on a convex f with Lg = 0 for T steps with
constant stepsize α > 0. Define

αopt =
D0

B
√
T + 1

and θ :=
α

αopt
.

Then we have the bound

E[f(x̄T)− f?] ≤
(

1
2θ + 1

2θ
−1
) BD0√

T + 1
. (5.28)

64

OPTIMIZATION FOR MODERN DATA ANALYSIS

Proof. The proof comes directly from setting αj ≡ α = θαopt = θ D0

B
√
T+1

in (5.27d). We have

E
[
f
(
x̄T
)
− f(x?)

]
≤ D2

0 +B2(T + 1)α2

2(T + 1)α
=
(

1
2θ
−1 + 1

2θ
) BD0√

T + 1
.

The tightest bound is attained when θ = 1, that is, α = αopt. The bound approximately linearly
in the error factor in our choice of α. That is, if our α differs by a factor of 2 (in either direction)
from αopt, the bound is worse by a factor of approximately 2. This means that to achieve the same
bound as with the optimal step size, we need to take about four times as many iterations, because
the bound also depends on the iteration counter T through a factor of approximately 1/

√
T .

Other stepsize schemes could also be selected here, including choices of αk that decrease with
k. But the constant stepsize is optimal for an upper bound of this type.

5.4.2 Case 2: B = 0

When B = 0, we obtain a linear rate of convergence in the expected-error measure ak. The
expression (9.2) simplifies in this case to

ak+1 ≤ (1 + α2
kL

2
g)ak − 2αkE

[
〈∇f(xk), xk − x∗〉

]
. (5.29)

Supposing that f is strongly convex, with modulus of convexity m > 0, we have that

〈∇f(x), x− x?〉 ≥ m‖x− x?‖2 . (5.30)

By substituting into (5.29), we obtain

ak+1 ≤ (1− 2mαk + L2
gα

2
k)ak . (5.31)

By choosing a constant steplength αk ≡ α, for any α in the range (0, 2m/L2
g), we obtain a linear

rate of convergence. The optimal choice of α is the one that minimizes the factor (1−2mα+L2
gα

2)
in the right-hand side of (5.31), that is, α = 2/L2

g. For this choice, we obtain from (5.31) that
ak+1 ≤ (1−m2/L2

g)ak, k = 0, 1, 2, . . . , so that

ak ≤
(

1− m2

L2
g

)k
D2

0. (5.32)

We can use this expression to bound the number of iterations T required to guarantee that the
expected error E

[
‖xT − x?‖2

]
= aT falls below a specified threshold ε > 0. By applying the

technique in Section A.3 to (5.32) we find that

T =

⌈
L2
g

m2
log

(
D2

0

ε

)⌉
.

5.4.3 Case 3: B and Lg both nonzero

In the general case in which both B and Lg are nonzero, but f is strongly convex, we have by using
(5.30) in (9.2) that

ak+1 ≤ (1− 2mαk + α2
kL

2
g)ak + α2

kB
2 (5.33)

65

RECHT AND WRIGHT

Constant Stepsize. First, consider the case of a constant stepsize. Assuming that α ∈ (0, 2m/L2
g),

we can roll out the recursion (5.33) to obtain

ak ≤ (1− 2mα+ α2L2
g)
kD2

0 +
αB2

2m− αL2
g

. (5.34)

No matter how many iterations k are taken, the bound on the right-hand size never falls below the
threshold value

αB2

2m− αL2
g

. (5.35)

We see this behavior in practice. The iterates converge to a ball around the optimal solution, whose
radius is bounded by (5.35), but from that point forward, they bounce around inside this ball.

We can reduce the radius of the ball by decreasing α. But this has the effect of slowing the
linear rate of convergence indicated by the first term in the right-hand side of (5.34): the quantity
1− 2mα+ α2L2

g moves closer to 1.
One way to balance these two effects is to use epoch doubling. The idea is to run with an

aggressively large stepsize α for a certain number of iterations T (called an “epoch”). Then we
halve the stepsize — replacing α by α/2 — and continue to iterate, for another 2T iterations.
Scheme such as this one can guarantee eventual convergence to x∗, at an overall rate that is
reasonable.

Many variants that use more flexible, possibly adaptive rules for choosing the lengths of epochs
(within which stepsizes are held constant) and the factor by which steplength is decreased between
epochs are used in practice. (Typical factors are .8 or .9.) Indeed, tuning of these “hyperparame-
ters” is one of the most important issues in practical implementation of the SGM.

Diminishing Stepsize. The scheme just described suggests another approach, one in which we
decrease the stepsize αk at a rate approximately proportional to 1/k. (The epoch-doubling scheme
is a piece-constant approximation to this. At the last iterate of epoch S, we will have taken about
(2S − 1)T total iterations, and the current steplength will be α/2S−1.)

Suppose we choose the stepsize to satisfy

αk =
γ

k0 + k
,

where γ and k0 are constants to be determined. We will show that suitable choices of these constants
lead to an error bound of the form

ak ≤
Q

k0 + k
,

for some Q. The following proposition can be proved by induction.

Proposition 5.2. Suppose f is strongly convex with modulus of convexity m. If we run the SGM
with stepsize

αk =
1

2m(L2
g/2m

2 + k)
, k = 0, 1, 2, . . . ,

then we have for some numerical constant c0,

E[‖xk − x?‖2] ≤ c0B
2

2m(L2
g/2m

2 + k)
, k = 0, 1, 2,

66

OPTIMIZATION FOR MODERN DATA ANALYSIS

5.5 Implementation Aspects

We mention here two techniques that are important elements of many practical implementations
of the SGM.

5.5.1 Epochs

As mentioned in Section 5.4.3, a central concept in SGMs is the notion of epochs. In an epoch,
some number of iterations are run, and then a choice is made about whether to change the stepsize.
A common strategy is to run with a constant step size for some fixed number of iterations T , and
then reduce the stepsize by a constant factor γ. Thus, if our initial stepsize is α, on the kth epoch,
the stepsize is αγk−1. This method is often more robust in practice than the diminishing stepsize
rule. For this stepsize rule, a reasonable heuristic is to choose γ between 0.8 and 0.9.

Another popular rule is called epoch doubling. In this scheme, we run for T steps with stepsize
α, then run 2T steps with stepsize α/2, and then 4T steps with stepsize α/4 and so on. Note that
this provides a piecewise constant approximation to the function α/k.

5.5.2 Momentum

A popular variant of the SGM makes use of momentum, replacing the basic step (5.4) with one of
the form

xk+1 = xk − αkg(xk, ξk) + β(xk − xk−1). (5.36)

The inspiration for this approach comes, of course, from the accelerated gradient methods of Chap-
ter 4. In practice, these variants are highly successful, with popular choices for β often falling in
the range [.8, .95].

In the case when B = 0, as in the randomized Kaczmarz method, the use of momentum can
yield speedups comparable to those seen in the accelerated gradient methods of Chapter 4. The
overhead of computing and maintaining the momentum term can cancel out the gains in speedup.
(An exception is described in the Notes and References for this chapter.)

In the general case, the theoretical guarantees for momentum methods only demonstrate meager
gains over the standard SGM. Essentially, we know that the function value will converge at a rate
of 1/k, but for certain instances, one can reduce the constant in front of the 1/k using momentum
or acceleration. Regardless of the theoretical guarantees, one should always keep in mind that
momentum can provide significant practical accelerations, and it should be considered an option
in any implementation of the SGM.

Notes and References

Analysis of the case of Lg = 0, for both weakly and strongly convex cases, appears in [20].

A accelerated version of randomized Kaczmarz is described in [18]. A special technique is used
to reduce the overhead associated with implementing the momentum step, so that some of the
gains the convergence rate associated with the acceleration are preserved.

67

RECHT AND WRIGHT

Exercises

1. Verify that the perceptron described in Section 5.1.3 is a special case of the SGM. In par-
ticular, verify the relationship between the steplength αk and the parameters γ and η in the
perceptron.

2. Consider the kth iteration (5.11) of the cyclic incremental gradient method applied to the
function (5.10). Show that the minimizer is found exactly after n steps (that is xn = x∗) and
that f(x∗) is one-half of the variance of the set {ω1, ω2, . . . , ωn}.

3. Verify the formula (5.13), given that the mean of the random variable ω is µ and its variance
is σ2. (The random variables ωi, i = 1, 2, . . . , k follow the same distribution, and all the
random variables in this expression are independent.)

4. We showed that the unregularized support vector machine (5.21) admits a bound of the form
(5.19) with Lg = 0. Find values of Lg and B such that the regularized support vector machine
(5.7) satisfies (5.19). (Hint: Use the inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2.

5. (a) Consider the finite-sum objective (5.5) with additive Gaussian noise model on the com-
ponent functions fi, that is,

[∇fi(x)]j = [∇f(x)]j + εij , for all i = 1, 2, . . . ,m and j = 1, 2, . . . , d,

where εij ∼ N(0, σ2) for all i, j. Show that when we estimate the gradient using a
minibatch S, that is,

g =
1

|S|
∑
i∈S
∇fi(x),

then we have

E(‖g −∇f(x)‖2) =
d

|S|
σ2, E(‖g‖2) = ‖∇f(x)‖2 +

d

|S|
σ2.

(b) Consider a minibatch strategy for the additive Gaussian noise model (5.3) for the general
formulation (5.1). That is, the gradient estimate is

g(x; ξ1, ξ2, . . . , ξs) := ∇f(x) +
1

s

s∑
j=1

ξj ,

where each ξj is i.i.d. with distribution N(0, σ2I), and s ≥ 1. Show that

Eξ1,ξ2,...,ξs (‖g(x; ξ1, ξ2, . . . , ξs)‖2) = ‖∇f(x)‖2 +
d

s
σ2.

6. Dropout. A popular heuristic in training neural networks is called dropout. Suppose we
are running stochastic gradient descent on a function on Rd. In each iteration of stochastic
gradient descent, a set S of variables of size b is chosen at random. A stochastic gradient is

68

OPTIMIZATION FOR MODERN DATA ANALYSIS

computed with those coordinates in S set to 0. Then, only the coordinates in Sc are updated.
Suppose we are minimizing the least squares cost

f(x) =
1

2n

n∑
i=1

(aTi x− bi)2 .

Find a function f̂(x) such that each iteration of dropout SGD corresponds to taking a valid
step of the incremental gradient method applied to f̂ . Qualitatively, how does changing the
size of S change the solution to which dropout SGD converges?

7. Epoch SGD. Let f(x) = E[F (x; ξ)] be a strongly convex function with parameterm. Assume
that

E[‖∇F (x; ξ)‖2] ≤ L2
g‖x− x?‖2 +B2 ,

where x? denotes the minimizer of f and Lg and B are constants. Suppose we run the
stochastic gradient method on f by sampling ξ and taking steps along ∇F (x; ξ) using an
epoch doubling approach. That is, we run for T steps with stepsize α, and then 2T steps with
stepsize α/2, and then 4T steps with stepsize α/4 and so on. Let x̂t be the average of all of
the iterates in the tth epoch. How many epochs are required to guarantee that

E[‖x̂t − x?‖2] ≤ ε ?

8. Random line search. Let f : Rd → R be a strongly convex function with L-Lipschitz
gradients and strong convexity parameter m. Consider the following algorithm

(a) Choose x0 ∈ Rd and set k = 0.

(b) Choose a direction vk uniformly at random

(c) Set tk = arg mint f(xk + tvk)

(d) Set xk+1 = xk + tkvk

(e) Set k = k + 1 and repeat (b) through (d) until converged.

Prove that E[f(xT)− f(x?)] ≤ ε provided

T ≥ CdL

m
log

(
f(x0)− f(x?)

ε

)
,

where C is a small constant. What is the smallest value you can derive for C?

9. Consider applying stocchastic gradient with constant stepsize α ∈ (0, 1) to (5.10), so that
each iteration has the form

xk+1 = xk − α(xk − ωik)

for ik drawn uniformly at random from {1, 2, . . . , n}. Assuming that the initial point is x0 = 0,
write down an explicit expression for xk, and find Ei0,i1,...,ik−1

(xk).

69

