
Chapter 4

Gradient Methods Using Momentum

The steepest descent method described in Chapter 3 always steps in the negative gradient direction,
which is orthogonal to the boundary of the level set for f at the current iterate. This direction can
change sharply from one iteration to the next. For example, when the contours of f are narrow
and elongated, the search directions at successive iterations may point almost in opposite directions
and may be almost orthogonal to the direction in which the minimizer lies. The resulting small
steps may produce only slow convergence toward the solution.

The steepest descent method is “greedy” in that it steps in the direction that is apparently most
productive at the current iterate, making no explicit use of knowledge gained about the function f
at earlier iterations. In this chapter, we examine methods that encode knowledge of the function in
various ways, and exploit this knowledge in their choice of search directions and step lengths. One
such class of techniques makes use of momentum, in which the search direction tends to be similar
to that one used on the previous step, with a small tweak in the direction of a negative gradient
evaluated at the current point or a nearby point. Each search direction is thus a combination of
all gradients encountered so far during the search — a compact encoding of the history of the
search. Momentum methods in common use include the heavy-ball method, the conjugate gradient
method, and Nesterov’s accelerated gradient methods.

The analysis of momentum methods tends to involve a laborious slog of impenetrable algebra.
But even adding a constant amount of momentum to a standard method can accelerate convergence
dramatically. In this chapter, we take an unconventional approach to these methods, attempting
to formalize intuition. We begin with an appeal to physics and derive momentum methods from
ordinary differential equations. We then use the notion of Lyapunov functions to show why mo-
mentum helps to accelerate convergence of strongly convex quadratic functions. Turning to general
convex functions, we keep our Lyapunov function, and show it is strictly decreasing. Our proofs
for these general methods are quite close to the standard proofs, but they draw the parallel back
to the original physical intuitions of momentum in an attempt to show why the proofs are as they
are.

4.1 Motivation from Differential Equations

One way to build intuition for momentum methods is to consider an optimization algorithm as a
dynamical system. The continuous limit of an algorithm often traces out the solution path of a
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differential equation. For instance, the gradient method is akin to moving down a potential well,
where the dynamics are driven by the gradient of f :

dx

dt
= −∇f(x). (4.1)

This differential equation has fixed points precisely when ∇f(x) = 0, which are minimizers of a
convex smooth function f .

There are, however, other differential equations whose fixed points occur precisely at the points
for which ∇f(x) = 0. Consider the second-order differential equation that governs a particle with
mass moving in a potential defined by the gradient of f :

µ
d2x

dt2
= −∇f(x)− bdx

dt
, (4.2)

where µ ≥ 0 governs the mass of the particle and b ≥ 0 governs the friction dissipated during
the evolution of the system. As before, the points x for which ∇f(x) = 0 are fixed points of
this ODE. In the limit as the mass µ → 0, we recover a scaled version of the system (4.1). For
µ positive, trajectories governed by (4.2) show evidence of momentum, continuing to move along
similar directions with a slight turn toward the direction indicated by −∇f(x).

A simple finite-difference approximation to (4.2) yields

µ
x(t+ ∆t)− 2x(t) + x(t−∆t)

∆t2
≈ −∇f(x(t))− bx(t+ ∆t)− x(t)

∆t
(4.3)

By rearranging terms and defining α and β appropriately (see the Exercises) we obtain

x(t+ ∆t) = x(t)− α∇f(x(t)) + β(x(t)− x(t−∆t)). (4.4)

By using this formula to generate a sequence {xk} of estimates of the vector x along the trajectory
defined by (4.2), we obtain

xk+1 = xk − α∇f(xk) + β(xk − xk−1) , (4.5)

where x−1 := x0. The algorithm defined by (4.5) is Heavy-Ball Method of Polyak. With a small
modification, we obtain a related method known as Nesterov’s optimal method (see below). When
f is a convex quadratic, approaches of the form (4.5) (possibly with adaptive choices of α and β
that vary between iterations) are known as Chebyshev iterative methods.

Upon defining

pk = xk+1 − xk = −α∇f(xk) + β(xk − xk−1) = −α∇f(xk) + βpk−1,

(with p−1 = 0), we can rewrite the iteration (4.5) in terms of two sequences:

xk+1 = xk + pk

pk = −α∇f(xk) + βpk−1.

Nesterov’s optimal method (also known as Nesterov’s accelerated gradient method) is defined by
the formula

xk+1 = xk − α∇f(xk + β(xk − xk−1)) + β(xk − xk−1) . (4.6)
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The only difference from (4.5) is that the gradient ∇f is evaluated at xk + β(xk − xk−1) rather
than at xk. By introducing an intermediate sequence {yk}, and allowing α and β to have possibly
different values at each iteration, this method can be rewritten as follows:

yk = xk + βk(x
k − xk−1) (4.7a)

xk+1 = yk − αk∇f(yk) , (4.7b)

where we define x−1 = x0 as before, so that y0 = x0.

Note that each of these methods have fixed points with xk = x∗ where x∗ is a minimizer of f . For
the Heavy-Ball method, we would also need p∗ = 0. For Nesterov’s method, we also need y∗ = x∗.
The rest of the chapter is devoted to finding appropriate conditions under which these accelerated
algorithms converge to these solutions at reasonable rates. As we will see, with proper setting of
parameters, these methods converge at a considerably faster rate than the steepest descent method.

4.2 Nesterov’s Method: Convex Quadratics

In this section, we analyze the convergence behavior of Nesterov’s optimal method (4.6) when
applied to convex quadratic objectives f , and derive suitable values for its parameters α and β.
We consider

f(x) =
1

2
xTQx− bTx+ c, (4.8)

with positive definite Hessian Q and eigenvalues

0 < m = λn ≤ λn−1 ≤ · · · ≤ λ2 ≤ λ1 = L. (4.9)

The condition number of Q is thus

κ := L/m. (4.10)

Note that x∗ = Q−1b is the minimizer of f , and that ∇f(x) = Qx− b = Q(x− x∗).
By specializing (4.6) to (4.8), and adding and subtracting x∗ at several points in this expression,

we obtain

xk+1 − x∗ = (xk − x∗)− αQ(xk + β(xk − xk−1)− x∗) + β
(

(xk − x∗)− (xk−1 − x∗)
)
. (4.11)

By concatenating the error vector xk−x∗ over two successive steps, we can express (4.11) in matrix
form: [

xk+1 − x∗
xk − x∗

]
=

[
(1 + β)(I − αQ) −β(I − αQ)

I 0

] [
xk − x∗
xk−1 − x∗

]
(4.12)

By defining

wk :=

[
xk+1 − x∗
xk − x∗

]
, T :=

[
(1 + β)(I − αQ) −β(I − αQ)

I 0

]
(4.13)

we can write the iteration (4.12) as

wk = Twk−1, k = 1, 2, . . . . (4.14)
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For later reference, we define x−1 := x0, so that

w0 =

[
x0 − x∗
x0 − x∗

]
. (4.15)

Before stating a convergence result for Nesterov’s method applied to (4.8), we recall the defini-
tion of the spectral radius of a matrix T , which is denoted by ρ(T ) and defined as follows:

ρ(T ) := max{|λ| |λ is an eigenvalue of T}. (4.16)

For appropriate choices of α and β in (4.6), we have that ρ(T ) < 1, which implies convergence of
the sequence {wk} to zero. We develop this theory in the remainder of this section.

Theorem 4.1. Consider Nesterov’s optimal method (4.6) applied to the convex quadratic (4.8)
with Hessian eigenvalues satisfying (4.9). If we set

α :=
1

L
, β :=

√
L−
√
m√

L+
√
m

=

√
κ− 1√
κ+ 1

, (4.17)

then the matrix T defined in (4.13) has the following eigenvalues

νi,1 =
1

2

[
(1 + β)(1− αλi) + i

√
4β(1− αλi)− (1 + β)2(1− αλi)2

]
, (4.18a)

νi,2 =
1

2

[
(1 + β)(1− αλi)− i

√
4β(1− αλi)− (1 + β)2(1− αλi)2

]
. (4.18b)

Moreover, ρ(T ) ≤ 1− 1/
√
κ.

Proof. We write the eigenvalue decomposition of Q as Q = UΛUT , where Λ = diag (λ1, λ2, . . . , λn).
By defining the permutation matrix Π as follows:

Πij =


1 i odd, j = (i+ 1)/2

1 i even, j = n+ (i/2)

0 otherwise.

we have by applying a similarity transformation to the matrix T that

Π

[
U 0
0 U

]T [
(1 + β)(I − αQ) −β(I − αQ)

I 0

] [
U 0
0 U

]
ΠT

= Π

[
(1 + β)(I − αΛ) −β(I − αΛ)

I 0

]
ΠT

=


T1 0 . . . 0
0 T2 . . . 0
...

. . .
...

0 0 . . . Tn

 ,
where

Ti =

[
(1 + β)(1− αλi) −β(1− αλi)

1 0

]
, i = 1, 2, . . . , n.
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The eigenvalues of T are the eigenvalues of Ti, for i = 1, 2, . . . , n, which are the roots of the following
quadratic:

u2 − (1 + β)(1− αλi)u+ β(1− αλi) = 0,

which are given by (4.18). Note first that for i = 1, we have from α = 1/L and λ1 = L that
ν1,1 = ν1,2 = 0. Otherwise the roots (4.18) are distinct complex numbers when 1 − αλi > 0 and
(1 + β)2(1− αλi) < 4β. It can be shown that these inequalities hold when α and β are defined in
(4.17) and λi ∈ (m,L). Thus for i = 2, 3, . . . , n, the magnitude of both νi,1 and νi,2 is

1

2

√
(1 + β)2(1− αλi)2 + 4β(1− αλi)− (1 + β)2(1− αλi)2

=
1

2

√
4β(1− αλi) =

√
β
√

1− (λi/L)

Thus for λi ≥ m, we have

√
β
√

1− (λi/L) ≤
√
β
√

1− (m/L) =

(√
L−
√
m√

L+
√
m
· L−m

L

)1/2

=

(√
L−
√
m√

L+
√
m
· (
√
L−
√
m)(
√
L+
√
m)

L

)1/2

=

√
L−
√
m√

L
= 1−

√
m/L ,

with equality in the case of λi = m (that is, i = n). We thus have

ρ(T ) = max
i=1,2,...,n

max(|νi,1|, |νi,2|) = 1− 1/
√
κ,

as required.

We now examine the consequence of T having a spectral radius less than 1. A famous result in
numerical linear algebra called Gelfand’s Formula [14] states that

ρ(T ) = lim
k→∞

(
‖T k‖

)1/k
. (4.19)

A consequence of this result is that for any ε > 0, there is Cε > 1 such that

‖T k‖ ≤ Cε(ρ(T ) + ε)k. (4.20)

Thus from (4.14), we have

‖wk‖ = ‖T kw0‖ ≤ ‖T k‖‖w0‖ ≤ (Cε‖w0‖)(ρ(T ) + ε)k,

which implies R-linear convergence provided that we choose ε ∈ (0, 1−ρ(T )). Thus when ρ(T ) < 1,
we have from (4.20) that the sequence {wk} (hence also {xk − x∗}) converges R-linearly to zero,
with rate arbitrarily close to ρ(T ).

Let us compare the linear convergence of Nesterov’s method against steepest descent, on convex
quadratics. Recall from (3.15) that the steepest-descent method with constant step α = 1/L
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requires O((L/m) log ε) iterations to obtain a reduction of factor ε in the function error f(xk)− f∗.
The rate defined by β in Theorem 4.1 suggests a complexity of O(

√
L/m log ε) to obtain a reduction

of factor ε in ‖wk‖ (a different quantity). For problems in which the condition number κ = L/m
is moderate to large, the heavy-ball method has a significant advantage. For example, if κ = 1000,
the improved rate translates into a factor-of-30 reduction in number of iterations required, with
similar workload per iteration (one gradient evaluation and a few vector operations).

A similar convergence result can be obtained by using Lyapunov functions. A function V :
Rd → R is a Lyapunov function for an algorithm if

1. V (w) > 0 for all w 6= w∗, for some w∗ ∈ Rd;

2. V (w∗) = 0.

Lyapunov functions can be used to show convergence of an iterative process. For example, if we
can show that V (wk+1) < ρ2V (wk) for the sequence {wk} and some ρ < 1, we have demonstrated
a kind of linear convergence of the sequence to its optimal point.

We construct a Lyapunov function for Nesterov’s optimal method by defining a matrix P from
the following theorem.

Theorem 4.2. Let A be a square real matrix. Then for a given positive scalar ρ, we have that
ρ(A) < ρ if and only if there exists a P � 0 satisfying ATPA− ρ2P ≺ 0.

Proof. If ρ(A) < ρ, then the matrix

P :=
∞∑
k=0

ρ−2k(Ak)T (Ak)

is well defined, positive definite (because the first term in the sum is a multiple of the identity),
and satisfies ATPA− ρ2P = −ρ2Id ≺ 0, proving the “only if” part of the result. For the converse,
assume that the linear matrix inequality ATPA − ρ2P ≺ 0 has a solution P � 0, and let λ be an
eigenvalue of A with corresponding eigenvector v. Then

0 > vTATPAv − ρ2vTPv = (|λ|2 − ρ2)vTPv

But since vTPv > 0, we must have that |λ| < ρ.

We apply this result to Nesterov’s method by setting A = T in (4.13). If there exists a P � 0
satisfying T TPT − ρ2P ≺ 0, we have

(wk)TPwk < ρ2(wk−1)TPwk−1. (4.21)

Iterating (4.21) down to k = 0, we see that

(wk)TPwk < ρ2k(w0)TPw0,

where w0 is defined in (4.15). We thus have

λmin(P )‖xk − x∗‖2 ≤ λmin(P )‖wk‖2 ≤ ρ2k‖P‖‖w0‖2 = 2ρ2k‖P‖‖x0 − x∗‖2,
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so that

‖xk − x∗‖ ≤
√

2cond(P )‖x0 − x∗‖ρk,

where cond(P ) is the condition number of P . The function V (w) := wTPw is a Lyapunov function
for the algorithm, with optimum at w∗ = 0. This function strictly decreases over all trajectories
and thus certifies that the algorithm is stable, that is, it converges to nominal values.

For quadratic f , we are able to construct a quadratic Lyapunov function by doing an elementary
eigenvalue analysis. But this proof does not generalize to the non-quadratic case. We show in the
next section how to construct a Lyapunov function for Nesterov’s optimal method that guarantees
convergence for all strongly convex functions.

4.3 Convergence for Strongly Convex Functions

We have shown that methods that use momentum are faster on convex quadratic functions than
steepest-descent methods, and the proof techniques build some intuition for the case of general
strongly convex functions. But they do not generalize directly. In this section, we propose a
different Lyapunov function that allows us to prove convergence of Nesterov’s method for the case
of strongly convex smooth functions, satisfying (2.17) (with m > 0) and (2.7).

It follows from the analysis of Section 3.2 that f(x)−f∗ is a Lyapunov function for the steepest
descent method (see (3.12)). For Nesterov’s method, we need a specially adapted Lyapunov func-
tion. First, for any variable v, we define ṽ := v − v∗, where v∗ is the the desired value to which
we would like it to converge. (Thus x̃k = xk − x∗, ỹk = yk − x∗, and so on.) Next, we define the
Lyapunov function as follows:

Vk = f(xk)− f∗ +
L

2
‖x̃k − ρ2x̃k−1‖2 . (4.22)

(We have omitted the dependence of Vk on xk and xk−1 for clarity.) We will show that

Vk+1 ≤ ρ2Vk for some ρ < 1, (4.23)

provided that αk and βk are chosen as in (4.17), that is,

αk ≡
1

L
, βk ≡

√
κ− 1√
κ+ 1

. (4.24)

To do so, we will only make use of the standard chain of inequalities for strongly convex functions
with Lipschitz gradients that we have used extensively for studying the gradient method. Namely,
we will use inequalities (2.8) and (2.18), restated here for convenience:

f(z) +∇f(z)T (w − z) +
m

2
‖w − z‖2 ≤ f(w) ≤ f(z) +∇f(z)T (w − z) +

L

2
‖w − z‖22 (4.25)

for all w and z.
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For compactness of notation, we define uk := 1
L∇f(yk). (Since u∗ = 0, we have ũk = uk.) The

decrease in the Lyapunov function at iteration k is developed as follows:

Vk+1 = f(xk+1)− f∗ +
L

2
‖x̃k+1 − ρ2x̃k‖2

≤ f(yk)− f∗ − L

2
‖ũk‖2 +

L

2
‖x̃k+1 − ρ2x̃k‖2 (4.26a)

= ρ2(f(yk)− f∗ + L(ũk)T (x̃k − ỹk))− ρ2L(ũk)T (x̃k − ỹk) (4.26b)

+ (1− ρ2)(f(yk)− f∗ − L(ũk)T ỹk) + (1− ρ2)L(ũk)T ỹk

− L

2
‖ũk‖2 +

L

2
‖x̃k+1 − ρ2x̃k‖2.

Here, formula (4.26a) follows from the right-hand inequality in (4.25), with w = xk+1 and z = yk,
while (4.26b) is obtained by adding and subtracting the same term, several times. We now invoke
the left-hand inequality in (4.25) twice. By setting w = yk and z = xk, and using ũk = uk =
1
L∇f(yk), we obtain

f(yk) ≤ f(xk)−∇f(yk)T (xk − yk)− m

2
‖xk − yk‖2

= f(xk)− L(ũk)T (x̃k − ỹk)− m

2
‖x̃k − ỹk‖2

By setting w = x∗ and z = yk in this same bound, we obtain

f(x∗) ≥ f(yk) +∇f(yk)T (x∗ − yk) +
m

2
‖yk − x∗‖2

= f(yk)− L(ũk)T ỹk +
m

2
‖ỹk‖2.

By substituting these bounds into (4.26b), we obtain

Vk+1 ≤ ρ2(f(xk)− f∗ − m

2
‖x̃k − ỹk‖2)− m(1− ρ2)

2
‖ỹk‖2

− ρ2L(ũk)T (x̃k − ỹk) + (1− ρ2)L(ũk)T ỹk

− L

2
‖ũk‖2 +

L

2
‖x̃k+1 − ρ2x̃k‖2

= ρ2(f(xk)− f∗ +
L

2
‖x̃k − ρ2x̃k−1‖2) (4.27a)

− mρ2

2
‖x̃k − ỹk‖2 − m(1− ρ2)

2
‖ỹk‖2 + L(ũk)T (ỹk − ρ2x̃k)− L

2
‖ũk‖2

+
L

2
‖x̃k+1 − ρ2x̃k‖2 − ρ2L

2
‖x̃k − ρ2x̃k−1‖2 (4.27b)

= ρ2Vk +Rk, (4.27c)

where

Rk := −mρ
2

2
‖x̃k − ỹk‖2 − m(1− ρ2)

2
‖ỹk‖2 + L(ũk)T (ỹk − ρ2x̃k)− L

2
‖ũk‖2

+
L

2
‖x̃k+1 − ρ2x̃k‖2 − ρ2L

2
‖x̃k − ρ2x̃k−1‖2. (4.28)
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Formula (4.27a) follows from adding and subtracting identical terms, together with some rearrange-
ment.

The bound (4.27c) suffices to prove (4.22) provided we can show that Rk is negative. We state
the result formally as follows.

Proposition 4.3. For Nesterov’s optimal method (4.7) applied to a strongly convex function, with
αk and βk defined in (4.24), and setting ρ2 = (1− 1/

√
κ), we have

Rk = −1

2
Lρ2

(
1

κ
+

1√
κ

)
‖x̃k − ỹk‖2 .

This result is proved purely by algebraic manipulation, using the specification of Nesterov’s
optimal method along with the definitions of the various quantities and the steplength settings
(4.24). We leave it as an Exercise. Note that any choice of ρ and βk that make this quantity
negative would suffice. It is possible one could derive a faster bounds (that is, a lower value of ρ)
by making other choices of the parameters that lead to a nonpositive value of Rk.

Proposition 4.3 asserts that Rk is a negative square for appropriately chosen parameters. Hence
we can conclude that Vk+1 ≤ ρ2Vk. We summarize the convergence result in the following theorem.

Theorem 4.4. For Nesterov’s optimal method (4.7) applied to a strongly convex function, with αk
and βk defined in (4.24), and setting ρ2 = (1− 1/

√
κ), we have

f(xk)− f∗ ≤
(

1− 1√
κ

)k {
f(x0)− f∗ +

m

2
‖x0 − x∗‖2

}
.

Proof. We have from Vk+1 ≤ ρ2Vk and the definition of Vk in (4.23) that

f(xk)− f∗ ≤ Vk ≤ ρ2kV0 =

(
1− 1√

κ

)k
V0.

Recalling that x−1 := x0, we have from (4.23) that

V0 = f(x0)− f∗ +
L

2
‖(1− ρ2)x̃0‖2

= f(x0)− f∗ +
L

2

(
1√
κ

)2

‖x0 − x∗‖2

= f(x0)− f∗ +
m

2
‖x0 − x∗‖2,

giving the result.

We note that the provable convergence rate is slightly worse for Nesterov’s method than for
heavy-ball applied to quadratics: 1−1/

√
κ for Nesterov and approximately 1−2/

√
κ for heavy-ball.

This worst-case bound suggests that Nesterov’s method may require about twice as many iterates
to reach a given tolerance threshold ε. This discrepancy is rarely observed in practice. Moreover,
Nesterov’s method can be adapted to a wider class of functions, as we show now.
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4.4 Convergence for Weakly Convex Functions

We can prove convergence of Nesterov’s optimal method (4.7) for weakly convex functions by
modifying the analysis of Section 4.3 for the strongly convex case. The basic idea is to use varying
values of βk and hence of the decrease parameter ρk, while maintaining a constant value for the α
parameter: αk ≡ 1/L.

We start by redefining Vk to use a variable value of ρ, as follows:

Vk = f(xk)− f∗ +
L

2
‖x̃k − ρ2

k−1x̃
k−1‖2 . (4.29)

We can now proceed with the derivation of the previous section, substituting this modified definition
of Vk into (4.26) and (4.27) and replacing ρ by ρk in the addition/subtraction steps. By setting
m = 0 in (4.27b), we obtain

Vk+1 ≤ ρ2
k(f(xk)− f∗ +

L

2
‖x̃k − ρ2

k−1x̃
k−1‖2) (4.30a)

+ L(ũk)T (ỹk − ρ2
kx̃

k)− L

2
‖ũk‖2 +

L

2
‖x̃k+1 − ρ2

kx̃
k‖2 −

ρ2
kL

2
‖x̃k − ρ2

k−1x̃
k−1‖2

= ρ2
k(f(xk)− f∗ +

L

2
‖x̃k − ρ2

k−1x̃
k−1‖2) +

L

2
‖ỹk − ρ2

kx̃
k‖2 −

ρ2
kL

2
‖x̃k − ρ2

k−1x̃
k−1‖2 (4.30b)

= ρ2
kVk +R

(weak)
k , (4.30c)

where

R
(weak)
k :=

L

2
‖ỹk − ρ2

kx̃
k‖2 −

ρ2
kL

2
‖x̃k − ρ2

k−1x̃
k−1‖2. (4.31)

Formula (4.30b) follows by using the identity x̃k+1 = xk+1 − x∗ = yk − uk − x∗ = ỹk − ũk, from
(4.7b), and completing the square.

We now choose ρk to force R
(weak)
k = 0 for k ≥ 1. From the definition (4.31), this will be true

provided that

ỹk − ρ2
kx̃

k = ρkx̃
k − ρkρ2

k−1x̃
k−1. (4.32)

By substituting ỹk = (1 +βk)x̃
k−βkx̃k−1 (from (4.7b)), and setting the coefficients of x̃k and x̃k−1

to zero, we find that the following conditions ensure (4.32):

1 + βk − ρ2
k = ρk, βk = ρkρ

2
k−1. (4.33)

From an arbitrary choice of ρ0 (about which more below), we can use these formulae to define
subsequent values of βk and ρk, for k = 1, 2, . . . . By substituting for βk, we obtain the following
relationship between two successive values of ρ:

1 + ρk(ρ
2
k−1 − 1)− ρ2

k = 0, (4.34)

which yields

ρ2
k =

(1− ρ2
k)

2

(1− ρ2
k−1)2

, k = 1, 2, . . . . (4.35)
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Using the fact that Vk ≤ ρ2
k−1Vk−1 for k = 1, 2, . . . (from (4.30c) and R

(weak)
k = 0 for k = 1, 2, . . . ,

we obtain

Vk ≤ ρ2
k−1ρ

2
k−2 . . . ρ

2
1V1 =


k−1∏
j=1

ρ2
j

V1 =
(1− ρ2

k−1)2

(1− ρ2
0)2

V1. (4.36)

For a bound on V1, we make the choices ρ0 = 0 and ρ−1 = 0, use (4.30c) and (4.31), and recall that
y0 = x0 to obtain

V1 ≤ R(weak)
0 =

L

2
‖ỹ0‖2 =

L

2
‖x0 − x∗‖2,

which by substitution into (4.36) (setting ρ0 = 0 again) yields

Vk ≤ (1− ρ2
k−1)2L

2
‖x0 − x∗‖2. (4.37)

We now use an elementary inductive argument to show that

1− ρ2
k ≤

2

k + 2
. (4.38)

Note first that the choice ρ0 = 0 ensures that (4.38) is satisfied for k = 0. Supposing that it is
satisfied for some k, we want to show that 1 − ρ2

k+1 ≤ 2/(k + 3). Suppose for contradiction that
this claim is not true. We then have

1− ρ2
k+1 >

2

k + 3
, so that ρ2

k+1 <
k + 1

k + 3
,

and thus
(1− ρ2

k+1)2

ρ2
k+1

>

(
2

k + 3

)2 k + 3

k + 1
=

4

(k + 1)(k + 3)
.

Since (k + 1)(k + 3) < (k + 2)2 for all k, this bound together with (4.38) contradicts (4.35). We
conclude that (4.38) continues to hold when k is replaced by k+ 1, so by induction (4.38) holds for
k = 0, 1, 2, . . . .

By substituting (4.38) into (4.37), and using the definition (4.29), we obtain

f(xk)− f∗ ≤ Vk ≤
2L

(k + 1)2
‖x0 − x∗‖2. (4.39)

This sublinear rate is faster than the rate we proved for the steepest-descent method (see Theo-
rem 3.3) by a square-root factor.

We summarize Nesterov’s optimal method for the weakly convex case in Algorithm 4.1. Note
that we have defined ρk and βk to satisfy the formulas (4.33) and (4.34), for k = 1, 2, . . . , and set
αk ≡ 1/L in (4.7b).

4.5 Conjugate Gradient Method

A problem with Nesterov’s method as presented is that one is required to know the convexity
parameters L and m to compute the appropriate step-sizes. The conjugate gradient method can

47



RECHT AND WRIGHT

Algorithm 4.1 Nesterov’s Optimal Algorithm: General Convex f

Given x0 and constant L satisfying (2.7), set x−1 = x0, β0 = 0, and ρ0 = 0;
for k = 0, 1, 2, . . . do

Set yk := xk + βk(x
k − xk−1);

Set xk+1 := yk − (1/L)∇f(yk);
Define ρk+1 to be the root in [0, 1] of the following quadratic: 1 + ρk+1(ρ2

k − 1)− ρ2
k+1 = 0;

Set βk+1 = ρk+1ρ
2
k;

end for

be obtained from a modification of Nesterov’s method that does not require knowledge of these
parameters. Let f be the convex quadratic (4.8), and consider the iteration scheme

xk+1 = xk − αkyk

yk = −∇f(xk) + βk−1y
k−1,

which is equivalent to (4.7) after a change of variables. To choose αk, we can pick the stepsize to
minimize f along the direction yk (that is, αk := minα>0 f(xk + αyk)). From (4.8), we have the
explicit formula

αk :=
(yk)T rk

(yk)TQyk
where rk := Qxk − p.

Definition 4.5. We say that two non-zero vectors u and v are conjugate (with respect to Q) if
uTQv = 0.

We now choose βk to ensure conjugacy of yk and yk−1, that is, (yk)TQyk−1 = 0. We thus have

0 = (yk)TQyk−1 = (−rk−1 + βyk−1)TQyk−1 = (−rk−1)TQyk−1 + βk(y
k−1)TQyk−1,

from which it follows that

βk =
(rk−1)TQyk−1

(yk−1)TQyk−1
. (4.40)

In fact, it can be shown that all directions yi are conjugate, that is, (yi)TQyj = 0 if i 6= j.
Consequently, walking along conjugate directions using exact line search yields convergence to x∗

in n steps.
Unfortunately, it is unclear how to exten the conjugate gradient approach to nonquadratic and

nonconvex functions. Many attempts have been made, replacing αk with a (possibly inexact) line
search along the direction yk and defining βk in a way that mimics (4.40) (and reduces to this case
when f indeed is convex quadratic and αk is exact). These nonlinear CG approaches are discussed
in [25, Chapter 5], where a more complete description of the rich theory of conjugate gradient
applied to convex quadratic is also given.

4.6 Lower Bounds on Rates

The term “optimal” in Nesterov’s optimal method is used because the convergence rate achieved
by the method is the best possible (possibly up to a constant), among algorithms that make use of
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gradient information at the iterates xk. This claim can be proved by means of a carefully designed
function, for which no method that makes use of all gradient observed up to and including iteration
k (namely, ∇f(xi), i = 0, 1, 2, . . . , k) can produce a sequence {xk} that achieves a rate better than
(4.39). The function proposed in [22] is a convex quadratic f(x) = (1/2)xTAx− eT1 x, where

A =



2 −1 0 0 . . . . . . 0
−1 2 −1 0 . . . . . . 0
0 −1 2 −1 0 . . . 0

. . .
. . .

. . .

0 . . . −1 2 −1
0 . . . 0 −1 2


, e1 =


1
0
0
...
0

 .

The solution x∗ satisfies Ax∗ = e1; its components are x∗i = 1− i/(n+ 1), for i = 1, 2, . . . , n. If we
use x0 = 0 as the starting point, and construct the iterate xk+1 as

xk+1 = xk +

k∑
j=0

γj∇f(xj),

for some coefficients γj , j = 0, 1, . . . , k, an elementary inductive argument shows that each iterate
xk can have nonzero entries only in its first k components. It follows that for any such algorithm,
we have

‖xk − x∗‖2 ≥
n∑

j=k+1

(x∗j )
2 =

n∑
j=k+1

(
1− j

n+ 1

)2

. (4.41)

A little arithmetic (see Exercises) shows that

‖xk − x∗‖2 ≥ 1

8
‖x0 − x∗‖2, k = 1, 2, . . . ,

n

2
− 1, (4.42)

It can be shown further that

f(xk)− f∗ ≥ 3L

32(k + 1)2
‖x0 − x∗‖2, k = 1, 2, . . . ,

n

2
− 1, (4.43)

where L = ‖A‖2. This lower bound on f(xk) − x∗ is within a constant factor of the upper bound
(4.39).

The restriction k ≤ n/2 in the argument above is not fully satisfying. A more compelling
example would show that the lower bound (4.43) holds for all k.

Exercises

1. Define α and β in terms of b, µ, and ∆t such that (4.4) corresponds to (4.3).

2. Minimize a quadratic objective f(x) = (1/2)xTAx with some first-order methods, generating
the problems using the following Matlab code fragment (or its equivalent in another language)
to generate a Hessian with eigenvalues in the range [m,L].
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mu=0.01; L=1; kappa=L/mu;

n=100;

A = randn(n,n); [Q,R]=qr(A);

D=rand(n,1); D=10.^D; Dmin=min(D); Dmax=max(D);

D=(D-Dmin)/(Dmax-Dmin);

D = mu + D*(L-mu);

A = Q’*diag(D)*Q;

epsilon=1.e-6;

kmax=1000;

x0 = randn(n,1); % use a different x0 for each of the 10 trials

Run the code in each case until f(xk) ≤ ε for tolerance ε = 10−6. Implement the following
methods.

• Steepest descent with αk ≡ 2/(m+ L).

• Steepest descent with αk ≡ 1/L.

• Steepest descent with exact line search.

• Heavy-ball method, with α = 4/(
√
L+
√
m)2 and β = (

√
L−
√
m)/(

√
L+
√
m).

• Nesterov’s optimal method, with α = 1/L and β = (
√
L−
√
m)/(

√
L+
√
m).

(a) Tabulate the average number of iterations required, over 10 random starts.

(b) Draw a plot of the convergence behavior on a typical run, plotting iteration number
against log10(f(xk) − f(x∗)). (Use the same figure, with different colors for each algo-
rithm.)

(c) Discuss your results, noting in particular whether the worst-case convergence analysis is
reflected in the practical results.

3. Discuss happens to the codes and algorithms in the previous question when we reset m to
0 (making f weakly convex). Comment on particular on what happens when you use the
uniform steplength αk ≡ 2/(L + m) in steepest descent. Are these observations consistent
with the convergence theory of Chapter 3?

4. Prove using Gelfand’s formula (4.19) that (4.20) is true, for some C > 1.

5. Show that the heavy-ball method (4.5) converges at a linear rate on the convex quadratic
(4.8) with eigenvalues (4.9), if we set

α :=
4

(
√
L+
√
m)2

, β :=

√
L−
√
m√

L+
√
m
.

You can follow the proof technique of Section 4.2 to a large extent, proceeding in the following
steps.

(a) Write the algorithm as a linear recursion wk+1 = Twk for appropriate choice of matrix
T and state variables wk.
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(b) Use a transformation to express T as a block-diagonal matrix, with 2 × 2 blocks Ti on
the diagonals, where each Ti depends on a single eigenvalue λi of Q.

(c) Find the eigenvalues λ̄i,1, λ̄i,2 of each Ti as a function of λi, α, and β.

(d) Show that for the given values of α and β, these eigenvalues are all complex.

(e) Show that in fact |λ̄i,1| = |λ̄i,2| =
√
β for all i = 1, 2, . . . , n, so that ρ(T ) =

√
β ≈

1− κ−1/2.

6. Prove Proposition 4.3 by using (4.7); the definitions κ = L/m, ũk = uk = (1/L)∇f(yk), and
ρ2 = (1− 1/

√
κ); and (4.24).

7. Show that if ρk−1 ∈ [0, 1], the quadratic equation (4.34) has a root ρk in [0, 1].

8. For the quadratic function of Section 4.6, prove the following bounds:

‖x0 − x∗‖22 ≤ n/3, ‖xk − x∗‖2 ≥ (n− k)3

3(n+ 1)2
≥ (n− k)3

n(n+ 1)2
‖x0 − x∗‖2.

(The bound (4.42) follows by setting k = n
2 − 1 in this expression and noting that it is

decreasing in k.)

9. 1D optimization. Consider the function

f(x) =


25x2 x < 1

x2 + 48x− 24 1 ≤ x ≤ 2

25x2 − 48x+ 72 x > 2

(a) Prove f is strongly convex with parameter 2 and has L-Lipschitz gradients with L = 50.

(b) What is the global minimizer of f? Justify your answer.

(c) Run the gradient method with stepsize 1/50, Nesterov’s method with stepsize 1/50 and
β = 2/3, and the Heavy Ball method with α = 1/18 and β = 4/9. In all cases start
the methods at x0 = 3. Plot the function value versus the iteration counter for each
method. For each method, also plot the worst case upper bounds on the function value
as derived for the case when f is a strongly convex quadratic with m = 2 and L = 50.
Explain how the actual performance relates to the worst case upper bound for quadratic
functions.
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