
Chapter 3

Elementary Descent Methods

Methods that use information about gradients to obtain descent in the objective function at each
iteration form the basis of all of the schemes studied in this book. We describe several methods
of this type, along with analysis of their convergence and complexity properties. This chapter can
be read as an introduction both to the gradient methods and to the fundamental tools of analysis
that are used to understand optimization algorithms.

Throughout the chapter, we consider the unconstrained minimization of a smooth convex func-
tion:

min
x∈Rn

f(x). (3.1)

The algorithms we consider in this chapter are suited to the case in which f and its gradient ∇f
can be evaluated—exactly, in principle—at arbitrary points x. Bearing in mind that this setup
may not hold for many data analysis problems, we focus on those fundamental algorithms that can
be extended to more general situations, for example:

• Objectives consisting of a smooth convex term plus a nonconvex regularization term;

• Minimization of smooth functions over simple constraint sets, such as bounds on the compo-
nents of x;

• Functions for which f of ∇f cannot be evaluated exactly without a complete sweep through
the data set, but unbiased estimates of ∇f can be obtained easily.

• Situations in which it is much cheaper to evaluate an individual component or a subvector of
∇f than the full gradient vector.

• Smooth but nonconvex f .

Extensions to the fundamental methods of his chapter, which allow us to handle these more general
cases, will be considered in subsequent chapters.

3.1 Descent Directions

Most of the algorithms we will consider in this book generate a sequence of iterates {xk} for which
the function values decrease at each iteration, that is, f(xk+1) < f(xk) for each k = 0, 1, 2,

19

RECHT AND WRIGHT

Line-search methods proceed by identifying a direction d from each x such that f decreases as we
move in the direction d. This notion can be formalized by the following definition:

Definition 3.1. d is a descent direction for f at x if f(x + td) < f(x) for all t > 0 sufficiently
small.

A simple, sufficient characterization of descent directions is given by the following proposition.

Proposition 3.2. If f is continuously differentiable in a neighborhood of x, then any d such that
dT∇f(x) < 0 is a descent direction.

Proof. We use Taylor’s theorem — Theorem 2.1. By continuity of ∇f , we can identify t̄ > 0 such
that ∇f(x+ td)Td < 0 for all t ∈ [0, t̄]. Thus from (2.3), we have for any t ∈ (0, t̄] that

f(x+ td) = f(x) + t∇f(x+ γtd)Td, some γ ∈ (0, 1),

from which it follows that f(x+ td) < f(x), as claimed.

Note that among all directions with unit norm,

inf
‖d‖=1

dT∇f(x) = −‖∇f‖, achieved when d = − ∇f(x)

‖∇f(x)‖
.

For this reason, we refer to −∇f(x) as the direction of steepest descent.

Since this direction always provides a descent direction, perhaps the simplest method for opti-
mization of a smooth function has the iterations

xk+1 = xk − αk∇f(xk), k = 0, 1, 2, . . . , (3.2)

for some steplength αk > 0. At each iteration, we are guaranteed that there is either some nonneg-
ative step α which decreases the function value unless ∇f(xk) = 0. But note that when ∇f(x) = 0,
we will have found a point which satisfies a necessary condition of local optimality. Moreover, if
f is convex, we will have computed a global minimizer of f . This algorithm is called the gradient
method or the method of steepest descent. In the next section, we will analyze how many iterations
are required to find points where the gradient nearly vanishes.

3.2 Steepest Descent

We first focus on the question of choosing the stepsize αk for the steepest descent method (3.3).
If αk is too large, we risk taking a step that increases the function value. On the other hand, if
αk is too small, we risk making too little progress and thus requiring too many iterations to find a
solution.

The simplest stepsize protocol is the short-step variant of steepest descent. We assume here
that f is L-smooth (see the definition in (2.7)). In this case, we can set αk to be a constant value
α, and simply iterate as follows:

xk+1 = xk − α∇f(xk), k = 0, 1, 2, (3.3)

20

OPTIMIZATION FOR MODERN DATA ANALYSIS

To estimate the amount of decrease in f obtained at each iterate of this method, we use Taylor’s
theorem. By setting p = αd in (2.2), we obtain

f(x+ αd) = f(x) + α∇f(x)Td+ α

∫ 1

0
[∇f(x+ γαd)−∇f(x)]d dγ

≤ f(x) + α∇f(x)Td+ α

∫ 1

0
‖∇f(x+ γαd)−∇f(x)‖‖d‖ dγ

≤ f(x) + α∇f(x)Td+ α2L

2
‖d‖2, (3.4)

where we used (2.7) for the last line. For x = xk and d = −∇f(xk), the value of α that minimizes
the expression on the right-hand side is α = 1/L. By substituting these values, we obtain

f(xk+1) = f(xk − (1/L)∇f(xk)) ≤ f(xk)− 1

2L
‖∇f(xk)‖2. (3.5)

This expression is one of the foundational inequalities in the analysis of optimization methods. It
quantifies the amount of decrease we can obtain from the function f to two critical quantities: the
norm of the gradient ∇f(xk) at the current iterate, and the Lipschitz constant L of the gradient.
Depending on the other assumptions about f , we can derive a variety of different convergence rates
from this basic inequality, as we now show.

3.2.1 General Case

From (3.5) alone, we can already say something about the rate of convergence of steepest descent,
provided we assume that f is bounded below. That is, we assume that there is a value f̄ such that

f(x) ≥ f̄ , for all x. (3.6)

In the case that f has a minimizer x∗, we can define f̄ = f(x∗).
Unwinding the inequalities (3.5), we find that

f(xT) ≤ f(x0)− 1

2L

T−1∑
k=0

‖∇f(xk)‖2

Since f̄ ≤ f(xT), we have
T−1∑
k=0

‖∇f(xk)‖2 ≤ 2L[f(x0)− f̄] .

This implies that limT→∞ ‖∇f(xT)‖ = 0. More concretely,

min
0≤k≤T−1

‖∇f(xk)‖ ≤
√

2L[f(x0)− f(xT)]

T
≤
√

2L[f(x0)− f̄]

T
.

Thus, we have shown that after T steps of steepest descent, we can find a point x satisfying

‖∇f(x)‖ ≤
√

2L[f(x0)− f̄]

T
. (3.7)

Note that this convergence rate is very slow, and only tells us that we will find a nearly stationary
point. We need more structure about f to guarantee faster convergence and global optimality.

21

RECHT AND WRIGHT

3.2.2 Convex Case

When f is also convex, we have the following stronger result for the steepest descent method.

Theorem 3.3. Suppose that f is convex and L-smooth, and that (3.1) has a solution x∗. Then
the steepest descent method with stepsize αk ≡ 1/L generates a sequence {xk}∞k=0 that satisfies

f(xT)− f∗ ≤ L

2T
‖x0 − x∗‖2, T = 1, 2, (3.8)

Proof. By convexity of f , we have f(x∗) ≥ f(xk) +∇f(xk)T (x∗ − xk), so by substituting into the
key inequality (3.5), we obtain for k = 0, 1, 2, . . . that

f(xk+1) ≤ f(x∗) +∇f(xk)T (xk − x∗)− 1

2L
‖∇f(xk)‖2

= f(x∗) +
L

2

(
‖xk − x∗‖2 − ‖xk − x∗ − 1

L
∇f(xk)‖2

)
= f(x∗) +

L

2

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
.

By summing over k = 0, 1, 2, . . . , T − 1, we have

T−1∑
k=0

(f(xk+1)− f∗) ≤ L

2

T−1∑
k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
=
L

2

(
‖x0 − x∗‖2 − ‖xT − x∗‖2

)
≤ L

2
‖x0 − x∗‖2.

Since {f(xk)} is a nonincreasing sequence, we have

f(xT)− f(x∗) ≤ 1

T

T−1∑
k=0

(f(xk+1)− f∗) ≤ L

2T
‖x0 − x∗‖2,

as required.

3.2.3 Strongly Convex Case

Recall from (2.18) that the smooth function f : Rd → R is strongly convex if there is a scalar m > 0
such that

f(z) ≥ f(x) +∇f(x)T (z − x) +
m

2
‖z − x‖2 (3.9)

Strong convexity asserts that f can be lower bounded by quadratic functions. These functions
change from point to point, but only in the linear term. It also tells us that the curvature of the
function is bounded away from zero. Note that if f is strongly convex and L-smooth, then f is
bounded above and below by simple quadratics (see (2.8) and (2.18)). This “sandwiching” effect
enables us to prove the linear convergence of the gradient method.

22

OPTIMIZATION FOR MODERN DATA ANALYSIS

The simplest strongly convex function is the squared Euclidean norm ‖x‖2. Any convex function
can be perturbed to form a strongly convex function by adding any small multiple of the squared
Euclidean norm. In fact, if f is any L-smooth function, then

fµ(x) = f(x) + µ‖x‖2

is strongly convex for µ large enough. Verifying this fact is a interesting exercise.
As another canonical example, note that a quadratic function f(x) = 1

2x
TQx is strongly convex

if and only if the smallest eigenvalue of Q is strictly positive. We saw in Theorem 2.8 that a strongly
convex f has a unique minimizer, which we denote by x∗.

Strongly convex functions are in essence the “easiest” functions to optimize by first-order meth-
ods. First, the norm of the gradient provides useful information about how far away we are from
optimality. Suppose we minimize both sides of the inequality (3.9) with respect to z. The minimizer
on the left-hand side is clearly attained at z = x∗, while on the right-hand side it is attained at
x−∇f(x)/m. By plugging these optimal values into (3.9), we obtain

f(x∗) ≥ f(x)−∇f(x)T
(

1

m
∇f(x)

)
+
m

2

∥∥∥∥ 1

m
∇f(x)

∥∥∥∥2

= f(x)− 1

2m
‖∇f(x)‖2.

By rearrangement, we obtain
‖∇f(x)‖2 ≥ 2m[f(x)− f(x∗)]. (3.10)

If ‖∇f(x)‖ < δ then

f(x)− f(x∗) ≤ ‖∇f(x)‖2

2m
≤ δ2

2m
.

Thus, when the gradient is small, we are close to having found a point with minimal function value.
We can even derive a stronger result about the distance of x to the optimal point x∗. Using (3.9)
and Cauchy-Schwartz, we have

f(x∗) ≥ f(x) +∇f(x)T (x∗ − x) +
m

2
‖x− x∗‖2

≥ f(x)− ‖∇f(x)‖ ‖x∗ − x‖+
m

2
‖x− x∗‖2

Rearranging terms proves that

‖x− x∗‖ ≤ 2

m
‖∇f(x)‖ . (3.11)

This says we can estimate the distance to the optimal value purely in terms of the norm of the
gradient.

We summarize this discussion in the following

Lemma 3.4. Let f be a strongly convex function with modulus m. Then we have

f(x)− f(x∗) ≤ ‖∇f(x)‖2

2m
(3.12)

‖x− x∗‖ ≤ 2

m
‖∇f(x)‖ . (3.13)

23

RECHT AND WRIGHT

We can now proceed to analyze the convergence of gradient descent on strongly convex functions.
By substituting (3.12) into our basic inequality (3.5), we obtain

f(xk+1) = f

(
xk − 1

L
∇f(xk)

)
≤ f(xk)− 1

2L
‖∇f(xk)‖2 ≤ f(xk)− m

L
(f(xk)− f∗).

Subtracting f∗ from both sides of this inequality gives us the recursion

f(xk+1)− f∗ ≤
(

1− m

L

)
(f(xk)− f∗) . (3.14)

Thus the function values converge linearly to the optimum. After T steps, we have

f(xT)− f∗ ≤
(

1− m

L

)T
(f(x0)− f∗) . (3.15)

3.2.4 Comparison Between Rates

It is straightforward to convert these convergence expressions into complexities, using the techniques
of Appendix A.3. We have from (3.7) that an iterate k will be found such that ‖∇f(xk)‖ ≤ ε for
some k ≤ T , where

T ≥ 2L(f(x0)− f∗)
ε2

.

For the weakly convex case, we have from (3.8) that f(xk)− f∗ ≤ ε when

k ≥ L‖x0 − x∗‖2

2ε
. (3.16)

For the strongly convex case, we have from (3.15) that f(xk)− f∗ ≤ ε for all k satisfying

k ≥ L

m
log((f(x0)− f∗)/ε). (3.17)

Note that in all three cases, we can get bounds in terms of the distance initial distance to optimality
‖x0 − x∗‖ rather than in terms of the initial optimality gap f(x0)− f∗ by using the inequality

f(x0)− f∗ ≤ L

2
‖x0 − x∗‖2 .

The linear rate (3.17) depends only logarithmically on ε, whereas the sublinear rates depend on
1/ε or 1/ε2. When ε is small (for example ε = 10−6), the linear rate would appear to be dramatically
faster, and indeed this is usually the case. The only exception would be when m is extremely small,
so that L/m is of the same order as ε. The problem is extremely ill conditioned in this case, and
there is little difference between the linear rate (3.17) and the sublinear rate (3.16).

All of these bounds depend on knowledge of the curvature parameter L. What happens when
we don’t know L? Even when we do know it, is the steplength αk ≡ 1/L good? We have reason to
suspect not, since the inequality (3.5) on which it is based uses the conservative global upper bound
L on curvature. (A sharper bound could be obtained in terms of the curvature in the neighborhood
of the current iterate xk.) In the remainder of this chapter, we expand our view to more general
choices of search directions and stepsizes.

24

OPTIMIZATION FOR MODERN DATA ANALYSIS

3.3 Line-Search Methods: Convergence

In the previous section we considered the short-step gradient method that followed the negative
gradient with a stepsize determined by the global curvature of the gradient, 1/L. In this section,
we generalize the convergence results to more generic descent methods. Suppose each step has the
form

xk+1 = xk + αkd
k, k = 0, 1, 2, . . . , (3.18)

where dk is a descent direction and αk is a positive stepsize. What do we need to guarantee
convergence to a stationary point at a particular rate? What do we need to guarantee convergence
of the iterates themselves?

Recall that our analysis of steepest-descent algorithm with fixed stepsize 1/L in the previous
section was based on the bound (3.5), which showed that the amount of decrease in f at iteration
k is at least a multiple of ‖∇f(xk)‖2. In the discussion below, we show that the same estimate of
function decrease, except for a different constant, can be obtained for many line-search methods of
the form (3.18), provided that dk and αk satisfy certain intuitive properties. Specifically, we show
that the following inequality holds:

f(xk+1) ≤ f(xk)− C‖∇f(xk)‖2, for some C > 0. (3.19)

The remainder of the analyses used properties about the function f itself that were independent
of the algorithm: smoothness, convexity, and strong convexity. For a general descent method, we
can provide similar analyses based on the property (3.19).

What can we say about the sequence of iterates {xk} generated by such a scheme? We state
an elementary theorem.

Theorem 3.5. Suppose that f is bounded below, with Lipschitz continuous gradient. Then all ac-
cumulation points x̄ of the sequence {xk} generated by a scheme that satisfies (3.19) are stationary,
that is, ∇f(x̄) = 0. If in addition f is convex, each such x̄ is a solution of (3.1).

Proof. Note first from (3.19) that

‖∇f(xk)‖2 ≤ [f(xk)− f(xk+1)]/C, k = 0, 1, 2, . . . , (3.20)

and since {f(xk)} is a decreasing sequence that is bounded below, it follows that limk→∞ f(xk)−
f(xk+1) = 0. If x̄ is an accumulation point, there is a subsequence S such that limk∈S,k→∞ x

k = x̄.
By continuity of ∇f , we have ∇f(x̄) = limk∈S,k→∞∇f(xk) = 0, as required. If f is convex, each
such x̄ satisfies the first-order sufficient conditions to be a solution of (3.1).

It is possible for the the sequence {xk} to be unbounded and have no accumulation points. For
example, some descent methods applied to the scalar function f(x) = e−x will generate iterates
that diverge to ∞. (This function is convex and bounded below but does not attain its minimum
value.)

We can prove other results about rates of convergence of algorithms (3.18) satisfying (3.19),
using almost identical proofs to those of Section 3.2. For example, for the case in which f is
bounded below by some quantity f̄ , we can show using the techniques of Section 3.2.1 that

min
0≤k≤T−1

‖∇f(xk)‖ ≤
√
f(x0)− f̄

CT
.

25

RECHT AND WRIGHT

For the case in which f is strongly convex with modulus m (and unique solution x∗), we can
combine (3.12) with (3.19) to deduce that

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− C‖∇f(xk)‖2 ≤ (1− 2mC)[f(xk)− f(x∗)],

which indicates linear convergence with rate (1− 2mC).
Interestingly, the argument of Section 3.2.2 concerning rate of convergence for the (non-strongly)

convex case cannot be generalized to this setting, though similiar results can be obtained by another
technique under an additional assumption, as we now show.

Theorem 3.6. Suppose that f is convex and smooth, where ∇f has Lipschitz constant L, and that
(3.1) has a solution x∗. Assume moreover that the level set defined by x0 is bounded in the sense
that R0 <∞, where

R0 := max ‖‖x− x∗‖ | f(x) ≤ f(x0)}.

Then a descent method satisfying (3.19) generates a sequence {xk}∞k=0 that satisfies

f(xT)− f∗ ≤ R2
0

CT
T = 1, 2, (3.21)

Proof. Defining ∆k := f(xk)− f(x∗), we have that

∆k = f(xk)− f(x∗) ≤ ∇f(xk)T (xk − x∗) ≤ R0‖∇f(xk)‖.

By substituting this bound into (3.19), we obtain

f(xk+1) ≤ f(xk)− C

R2
0

∆2
k,

which after subtracting f(x∗) from both sides and using the definition of ∆k becomes

∆k+1 ≤ ∆k −
C

R2
0

∆2
k = ∆k

(
1− C

R2
0

∆k

)
. (3.22)

By inverting both sides, we obtain

1

∆k+1
≥ 1

∆k

1

1− C
R2

0
∆k

Since ∆k+1 ≥ 0, we have from (3.22) that C
R2

0
∆k ∈ [0, 1], so using the fact that 1

1−ε ≥ 1 + ε for all

ε ∈ [0, 1], we obtain
1

∆k+1
≥ 1

∆k

(
1 +

C

R2
0

∆k

)
=

1

∆k
+

C

R2
0

.

By applying this formula recursively, we have for any T ≥ 1 that

1

∆T
≥ 1

∆0
+
TC

R2
0

≥ TC

R2
0

,

and we obtain the result by taking the inverse of both sides in this bound and using ∆T = f(xT)−
f(x∗).

26

OPTIMIZATION FOR MODERN DATA ANALYSIS

3.4 Line Search Methods: Choosing the Direction

In this section, we turn to consider methods analysis of generic line-search descent methods, which
take steps of the form (3.18), where αk > 0 and dk is a search direction that satisfies the following
properties, for some positive constants ε̄, γ1, γ2:

0 < ε̄ ≤ −(dk)T∇f(xk)

‖∇f(xk)‖‖dk‖
, (3.23a)

0 < γ1 ≤
‖dk‖

‖∇f(xk)‖
≤ γ2. (3.23b)

Condition (3.23a) says that the angle between −∇f(xk) and dk is acute, and bounded away from
π/2, while condition (3.23b) ensures that dk and ∇f(xk) are not too much different in length. (If
xk is a stationary point, we have ∇f(xk) = 0 so our algorithm will set dk = 0 and terminate.)

For the “obvious” choice of search direction—the negative gradient dk = −∇f(xk)—the condi-
tions (3.23) hold trivially, with ε̄ = γ1 = γ2 = 1.

We can use Taylor’s theorem to bound the change in f when we move along dk from the current
iteration xk. By setting x = xk and p = αdk in (2.2), we obtain

f(xk+1) = f(xk + αdk)

= f(xk) + α∇f(xk)Tdk + α

∫ 1

0
[∇f(xk + γαdk)−∇f(xk)]dk dγ

≤ f(xk) + α∇f(xk)Tdk + α

∫ 1

0
‖∇f(xk + γαdk)−∇f(xk)‖‖dk‖ dγ

≤ f(xk) + α∇f(xk)Tdk + α2

∫ 1

0
γL‖dk‖2 dγ

≤ f(xk)− αε̄‖∇f(xk)‖‖dk‖+ α2L

2
‖dk‖2

≤ f(xk)− α
(
ε̄− αL

2
γ2

)
‖∇f(xk)‖‖dk‖, (3.24)

where we used (2.7) for the second-last line and (3.23) throughout. It is clear from this expression
that for all values of α sufficiently small—to be precise, for α ∈ (0, 2ε̄/(Lγ2))—we have f(xk+1) <
f(xk), unless of course xk is a stationary point.

In deriving the bound (3.24), we did not require convexity of f , only Lipschitz continuity of the
gradient ∇f . The same is true for most of the analysis in this section. Convexity is used only in
proving rates of convergence to a solution x∗, in Sections 3.3 and 3.2. (Even there, we could relax
the convexity assumption to obtain results about convergence to stationary points.)

We mention a few possible choices of dk apart from the negative gradient direction −∇f(xk).

• The transformed negative gradient direction dk = −Sk∇f(xk), where Sk is a symmetric
positive definite matrix with eigenvalues in the range [γ1, γ2], where γ1 and γ2 are positive
quantities as in (3.23). The second condition in (3.23) hold, by definition of Sk, and the first
condition holds with ε̄ = γ1/γ2, since

−(dk)T∇f(xk) = ∇f(xk)TSk∇f(xk) ≥ γ1‖∇f(xk)‖2 ≥ (γ1/γ2)‖∇f(xk)‖‖dk‖.

27

RECHT AND WRIGHT

Newton’s method, which chooses Sk = ∇2f(xk), would satisfy this condition provided the
true Hessian has eigenvalues uniformly bounded in the range [1/γ2, 1/γ1] for all xk.

• The Gauss-Southwell variant of coordinate descent chooses dk = −[∇f(xk)]ik , where ik =
arg mini=1,2,...,n |[∇f(xk)]i|. (We leave it as an exercise to show that the conditions (3.23) are
satisfied for this choice of dk.) There does not seem to be an obvious reason to use this search
direction. Since it is defined in terms of the full gradient ∇f(xk), why not use dk = −∇f(xk)
instead? The answer (as we discuss further in Chapter 6) is that for some important kinds of
functions f , the gradient ∇f(xk) can be updated efficiently to obtain ∇f(xk+1) provided that
xk and xk+1 differ in only a single coordinate. These cost savings make coordinate descent
methods competitive with, and often faster than, full-gradient methods.

• Some algorithms make randomized choices of dk in which the conditions (3.23) hold in the
sense of expectation, rather than deterministically. In one variant of stochastic coordinate
descent, we set dk = −[∇f(xk)]ik , for ik chosen uniformly at random from {1, 2, . . . , n} at
each k. Taking expectations over ik, we have

Eik
(

(−dk)T∇f(xk)
)

=
1

n

n∑
i=1

[∇f(xk)]2i =
1

n
‖∇f(xk)‖2 ≥ 1

n
‖∇f(xk)‖‖dk‖,

where the last inequality follows from ‖dk‖ ≤ ‖∇f(xk)‖, so the first condition in (3.23) holds
in an expected sense. We have that E(‖dk‖2) = 1

n‖∇f(xk)‖22, so the norms of ‖dk‖ and
‖∇f(xk)‖ are also similar to within a scale factor, so the first part of (3.23) also holds in an
expected sense. Rigorous analysis of these methods is presented in Chapter 6.

• Another important class of randomized schemes are the stochastic gradient methods discussed
in Chapter 5. In place of an exact gradient ∇f(xk), these method typically have access to
a vector g(xk, ξk), where ξk is a random variable, such that Eξkg(xk, ξk) = ∇f(xk). That is,
g(xk, ξk) is an unbiased (but often very noisy) estimate of the true gradient ∇f(xk). Again,
if we set dk = −g(xk, ξk), the conditions (3.23) hold in an expected sense, though the bound
E(‖dk‖) ≤ γ2‖∇f(xk)‖ requires additional conditions on the distribution of g(xk, ξk) as a
function of ξk. Further analysis of stochastic gradient methods appears in Chapter 5.

3.5 Line Search Methods: Choosing the Steplength

Each iteration of a typical descent algorithm has two ingredients: a search direction dk, which is
typically related to the negative of the search direction, and a step length αk > 0, which is the
scalar multiple applied to the search direction to obtain the step. The iteration therefore has the
form

xk+1 = xk + αkd
k. (3.25)

We assume for this discussion that dk satisfies the properties (3.23). We now turn to the issue
of choosing αk, which often requires a subroutine designed specifically for computing αk at each
iteration. We emphasize that even for the gradient method, when you don’t know the parameter
L, some method will be required to find a stepsize to guarantee a sufficient decrease like (3.19).

There are several alternative approaches, of varying theoretical and practical validity.

28

OPTIMIZATION FOR MODERN DATA ANALYSIS

Constant Stepsize. As we have seen in Section 3.2, constant stepsizes can yield rapid conver-
gence rates. The main drawback of the constant stepsize method is that one needs some prior
information to properly choose the stepsize.

The first approach to choosing a constant stepsize (one commonly used in machine learning,
where the step length is often known as the “learning rate”) is trial and error. Extensive experience
in applying gradient (or stochastic gradient) algorithms to a particular class of problems may reveal
that a particular stepsize is reliable and reasonably efficient. Typically, a reasonable heuristic is to
pick α as large as possible such that the algorithm doesn’t diverge. In some sense, this approach
is estimating the Lipschitz constant of the gradient of f by trial and error. Slightly enhanced
variants are also possible, for example, αk may be held constant for many successive iterations
then decreased periodically. Since such schemes are highly application- and problem-dependent,
we cannot say much more about them here.

A second approach is to base the choice of αk on knowledge of the global properties of the
function f , for example, on the Lipschitz constant L for the gradient (see (2.7)) or the modulus of
convexity µ (see (2.17)). We call such variants “short-step” methods. Given the expression (3.24)
above, for example, and supposing we have estimates of all the quantities γ1, γ2, and L that appear
therein, we could choose α to maximize the coefficient of the last term. Setting α = ε̄/(Lγ2), we
obtain from (3.24) and (3.23) that

f(xk+1) ≤ f(xk)− ε̄2

2Lγ2
‖∇f(xk)‖‖dk‖ ≥ f(xk)− ε̄2γ1

2Lγ2
‖∇f(xk)‖2. (3.26)

Thus, the amount of decrease in f at iteration k is at least a positive multiple of the squared
gradient norm ‖∇f(xk)‖2.

Exact Line Search. Once we have chosen a descent direction, we can minimizing the function
restricted to this direction. That is, we can perform a one-dimensional line search along direction
dk to find an approximate solution of the following problem:

min
α>0

f(xk + αdk). (3.27)

This technique requires evalaution of f(xk + αdk) (and possibly also its derivative with respect to
α, namely (dk)T∇f(xk + αdk)) economically, for arbitrary positive values of α. There are many
cases where these line searches can be computed at low cost. For example, if f is a multivariate
polynomial, the line search amounts to minimizing a univariate polynomial. Such a minimization
can be performed by finding the roots of the polynomial, and then testing each root to find the
minimum. In other settings, such as coordinate descent methods of Chapter 6, it is possible to
evaluate f(xk +αdk) cheaply for certain f , provided that dk is a coordinate direction. Convergence
analysis for exact line search methods tracks that for the short-step methods above. Since the exact
minimizer of f(xk + αdk) will achieve at least as much reduction in f as the choice α = ε̄/(Lγ2)
used to derive the estimate (3.26), it is clear that (3.26) also holds for exact line searches.

Approximate Line Search. In full generality, exact line searches are expensive and unnecessary.
Better empirical performance is achieved by approximate line search. There was a lot of research in
the 1970s and 1980s on finding conditions that should be satisfied by approximate line searches so
as to guarantee good convergence properties, and on identifying line-search procedures which find

29

RECHT AND WRIGHT

such approximate solutions economically. (By “economically,” we mean that an average of three or
less evaluations of f are required.) One popular pair of conditions that the approximate minimizer
α = αk is required to satisfy, called the Weak Wolfe Conditions, is as follows:

f(xk + αdk) ≤ f(xk) + c1α∇f(xk)Tdk, (3.28a)

∇f(xk + αdk)Tdk ≥ c2∇f(xk)Tdk . (3.28b)

Here, c1 and c2 are constants that satisfy 0 < c1 < c2 < 1. The condition (3.28a) is often known
as the “sufficient decrease condition,” because it ensures that the actual amount of decrease in f
is at least a multiple c1 of the amount suggested by the first-order Taylor expansion. The second
condition (3.28b), which we call the “gradient condition,” ensures that αk is not too short; it ensures
that we move far enough along dk that the directional derivative of f along dk is substantially less
negative than its value at α = 0, or is zero or positive. These conditions are illustrated in Figure 3.1.

It can be shown that there exist values of αk that satisfy both weak Wolfe conditions simulta-
neously. To show that these conditions imply a reduction in f that is related to ‖∇f(xk)‖2 (as in
(3.26)), we argue as follows. First, from condition (3.28b) and the Lipschitz property for ∇f , we
have

−(1− c2)∇f(xk)Tdk ≤ [∇f(xk + αkd
k)−∇f(xk)]Tdk ≤ Lαk‖dk‖2,

and thus

αk ≥ −
(1− c2)

L

∇f(xk)Tdk

‖dk‖2
.

Substituting into (3.28a), and using the first condition in (3.23), then yields

f(xk+1) = f(xk + αkd
k) ≤ f(xk) + c1αk∇f(xk)Tdk

≤ f(xk)− c1(1− c2)

L

(∇f(xk)Tdk)2

‖dk‖2

≤ f(xk)− c1(1− c2)

L
ε̄2‖∇f(xk)‖2.

The following algorithm (from [?]) finds a steplength α satisfying the conditions (3.41). This
method maintains a subinterval [L,U] of the positive real line (intially L = 0 and U = ∞) that
contains a point satisfying (3.41), along with a current guess α ∈ (L,U) of this point. If the
sufficient decrease condition (3.28a) is violated by α, then the current guess is too long, so the
upper bound U is assigned the value α, and the new guess is taken to be the midpoint of the new
interval [L,U]. If the sufficient decrease condition holds by the condition (3.28b) is violated, the
current guess of α is too short. In this case, we move the lower bound up to α, and take the next
guess of α to be either the midpoint of [L,U] (if U is finite), or double the previous guess (if U is
still infinite).

A rigorous proof that Algorithm 3.1 terminates with a value of α satisfying (3.41) can be found
in the Appendix.

Backtracking Line Search. Another popular approach to determining an appropriate value for
αk is known as “backtracking.” It is widely used in situations where evaluation of f is economical
and practical, while evaluation of the gradient ∇f is more difficult. It is easy to implement (no

30

OPTIMIZATION FOR MODERN DATA ANALYSIS

Satisfies weak Wolfe conditions

f(x+ d)

α

f(x)+c f(x) d1α

∆ Τ

Satisfies sufficient decrease condition

Satisfies gradient condition

α

Figure 3.1: Weak Wolfe conditions are satisfied when both the gradient condition (3.28b) and the
sufficient decrease condition (3.28a) hold.

Algorithm 3.1 Extrapolation-Bisection Line Search

Given 0 < c1 < c2 < 1, set L← 0, U ← +∞, α← 1;
repeat

if f(x+ αd) > f(x) + c1α∇f(x)Td then
Set U ← α and α← (U + L)/2;

else if ∇f(x+ αd)Td < c2∇f(x)Td then
Set L← α;
if U = +∞ then

Set α← 2L;
else

Set α = (L+ U)/2;
end if

else
Stop (Success!);

end if
until Forever

31

RECHT AND WRIGHT

estimate of the Lipschitz constant L is required, for example) and still results in reasonably fast
convergence.

In its simplest variant, we first try a value ᾱ > 0 as the initial guess of the steplength, and choose
a constant β ∈ (0, 1). The step length αk is set to the first value in the sequence ᾱ, βᾱ, β2ᾱ, β3ᾱ, . . .
for which a sufficient decrease condition (3.28a) is satisfied. Note that backtracking does not require
a condition like (3.28b) to be checked. The purpose of such a condition is to ensure that αk is not
too short, but this is not a concern in backtracking, because we know that αk is either the fixed
value ᾱ, or is within a factor β of a step length that is too long.

Under the assumptions above, we can again show that the decrease in f at iteration k is a
positive multiple of ‖∇f(xk)‖2. When no backtracking is necessary, that is, αk = ᾱ, we have from
(3.23) that

f(xk+1) ≤ f(xk) + c1ᾱ∇f(xk)Tdk ≤ f(xk)− c1ᾱε̄γ1‖∇f(xk)‖2. (3.29)

When backtracking is needed, we have from the fact that the test (3.28a) is not satisfied for the
previously tried value α = β−1αk that

f(xk + β−1αkd
k) > f(xk) + c1β

−1αk∇f(xk)Tdk.

By a Taylor series argument like the one in (3.24), we have

f(xk + β−1αkd
k) ≤ f(xk) + β−1αk∇f(xk)Tdk +

L

2
(β−1αk)

2‖dk‖2.

From the last two inequalities and some elementary manipulation, we obtain that

αk ≥ −
2

L
β(1− c1)

∇f(xk)Tdk

‖dk‖2
.

By substituting into (3.28a) with α = αk (note that this condition is satisfied for this value of α)
and then using (3.23), we obtain

f(xk+1) ≤ f(xk) + c1αk∇f(xk)Tdk

≤ f(xk)− 2

L
β(1− c1)c1

(∇f(xk)Tdk)2

‖dk‖2

≤ f(xk)− 2

L
βc1(1− c1)ε̄2‖∇f(xk)‖2. (3.30)

3.6 Convergence to Approximate Second-Order Necessary Points

The line-search methods that we described so far in this chapter asymptotically satisfy first-order
optimality conditions with certain complexity guarantees. We now describe an elementary method
that is designed to find points that satisfy the second-order necessary conditions, which are

∇f(x∗) = 0, ∇2f(x∗) positive semidefinite (3.31)

(see Theorem 2.4). Our method makes a further smoothness assumption on f . In addition to
Lipschitz continuity of the gradient ∇f , we assume Lipschitz continuity of the Hessian ∇2f . That
is, we assume that there is a constant M such that

‖∇2f(x)−∇2f(y)‖ ≤M‖x− y‖, for all x, y ∈ dom (f). (3.32)

32

OPTIMIZATION FOR MODERN DATA ANALYSIS

By extending Taylor’s theorem (Theorem 2.1) to a third-order term, and using the definition of M ,
we obtain the following cubic upper bound on f :

f(x+ p) ≤ f(x) +∇f(x)T p+
1

2
pT∇2f(x)p+

1

6
M‖p‖3. (3.33)

As in Section 3.2, we make an additional assumption that f is bounded below by f̄ .
We describe an elementary algorithm that makes use of the expansion (3.33) as well as the

steepest-descent theory of Subsection 3.2. Our algorithm aims to identify a point that approximately
satisfies the second-order necessary conditions (3.31), that is,

‖∇f(x)‖ ≤ εg, λmin(∇2f(x)) ≥ −εH , (3.34)

where εg and εH are two small constants.
Our algorithm takes steps of two types: a steepest-descent step, as in Section 3.2, or a step in

a negative curvature direction for ∇2f . Iteration k proceeds as follows:

(i) If ‖∇f(xk)‖ > εg, take the steepest descent step (3.3).

(ii) Otherwise, define λk to be the minimum eigenvalue of ∇2f(xK), that is, λk := λmin(∇2f(xk)).
If λk < −εH , choose pk to be the eigenvector corresponding to the most negative eigenvalue
of ∇2f(xk). Choose the size and sign of pk such that ‖pk‖ = 1 and (pk)T∇f(xk) ≤ 0, and set

xk+1 = xk + αkp
k, where αk =

2|λk|
M

. (3.35)

• If neither of these conditions hold, then xk satisfies the necessary conditions (3.34), so is an
approximate second-order-necessary point.

For the steepest-descent step (i), we have from (3.5) that

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2 ≤ f(xk)−

ε2g
2L
. (3.36)

For a step of type (ii), we have from (3.33) that

f(xk+1) ≤ f(xk) + αk∇f(xk)T pk +
1

2
α2
k(p

k)T∇2f(xk)pk +
1

6
Mα3

k‖pk‖3

≤ f(xk)− 1

2

(
2|λk|
M

)2

|λk|+
1

6
M

(
2|λk|
M

)3

= f(xk)− 2

3

|λk|3

M2
(3.37)

= f(xk)− 2

3

ε3H
M2

. (3.38)

By aggregating (3.36) and (3.38), we have that at each xk for which the condition (3.34) does not
hold, we attain a decrease in the objective of at least

min

(
ε2g
2L
,
2

3

ε3H
M2

)
.

33

RECHT AND WRIGHT

Using the lower bound f̄ on the objective f , we see that the number of iterations K required to
meet he condition (3.34) must satisfy the condition

K min

(
ε2g
2L
,
2

3

ε3H
M2

)
≤ f(x0)− f̄ ,

from which we conclude that

K ≤ max

(
2Lε−2

g ,
3

2
M2ε−3

H

)(
f(x0)− f̄

)
.

Note that the maximum number of iterates required to identify a point for which just the approx-
imate stationarity condition ‖∇f(xk)‖ ≤ εg holds is at most 2Lε−2

g (f(x0)− f̄). (We can just omit
the second-order part of the algorithm.) Note too that it is easy to devise approximate versions of
this algorithm with similar complexity. For example, the negative curvature direction pk in step (ii)
above can be replaced by an approximation to the direction of most negative curvature, obtained
by the Lanczos iteration with random initialization.

Notes and References

The proof for weakly convex is from Vandenberghe notes.
The proof of Theorem 3.6 is from [21, Theorem 2.1.14].
Weak Wolfe line search is adapted from Burke and Overton and Lewis.

Exercises

1. Linear Rates. Let {xk} be a sequence satisfying xk+1 ≤ (1 − β)xk for 0 < β < 1, and
x0 ≤ C. Prove that xk ≤ ε for all

k ≥ β−1 log
(
C
ε

)
.

2. Verify that if f is twice continuously differentiable with the Hessian satisfying mI � ∇2f(x)
for all x ∈ dom (f), then the strong convexity condition (2.17) is satisfied.

3. Show, as a corollary of Theorem 3.5 that if the sequence {xk} described in this theorem is
bounded and if f is strictly convex, we have limk→∞ xk = x∗.

4. How much of the analysis of Sections 3.2, 3.4, 3.5, and 3.3 applies to smooth nonconvex
functions? Specifically, state an analog of Theorem 3.5 that is true when the assumption of
convexity of f is dropped.

5. How is the analysis of Section 3.2 affected if we take an even shorter constant steplength than
1/L, that is, α ∈ (0, 1/L)? Show that we can still attain a “1/k” sublinear convergence rate
for {f(xk)}, but that the rate involves a constant that depends on the choice of α.

6. Find positive values of ε̄, γ1, and γ2 such that the Gauss-Southwell choice dk = −[∇f(xk)]ik ,
where ik = arg mini=1,2,...,n |[∇f(xk)]i| satisfies conditions (3.23).

34

OPTIMIZATION FOR MODERN DATA ANALYSIS

7. Co-coercivity of the gradient map. Suppose that f : Rd → R is an m-strongly convex
function with L-Lipschitz gradients.

(a) Show that q(x) := f(x)− m
2 ‖x‖

2 is convex with L−m Lipschitz gradients.

(b) Use part (a) to prove that

〈∇f(x)−∇f(y), x− y〉 ≥ mL

m+ L
‖x− y‖2 +

1

m+ L
‖∇f(x)−∇f(y)‖2

for all x and y.

(c) Use part (b) and the fact that ∇f(x?) = 0 to show that the kth iterate of the gradient
method applied to f with stepsize 2

m+L satisfies

‖xk − x?‖ ≤
(
κ− 1

κ+ 1

)k
‖x0 − x?‖ ,

where κ = L/m.

8. Weakly convex optimization. Let f be a convex function with L-Lipschitz gradients.
Assume that we know the true optimal solution lies in a ball of radius R about zero. In this
exercise, we will show that minimizing a nearby strongly convex function will quickly produce
a solution that is an approximate minimizer of f . Consider running the gradient method on
the function

fε(x) = f(x) +
ε

2R2
‖x‖2

initialized at some x0 with ‖x0‖ ≤ R.

(a) Let x
(ε)
? denote an optimal solution of fε. Is x

(ε)
? unique?

(b) Prove that f(z)− f(x?) ≤ fε(z)− fε(x(ε)
?) + ε

2 .

(c) Prove that for an appropriately chosen stepsize, the gradient method applied to fε will
find a solution such that

fε(z)− fε(x(ε)
?) ≤ ε

2

in at most
R2L

ε
log

(
8R2

ε

)
iterations. Find a constant stepsize that yields such a convergence rate.

9. Regularized Least-Squares. Let A be an n × d matrix with n < d and rank(A) = n. In
this problem, we will study the least-squares optimization problem

minimize
1

n
‖Ax− b‖2 . (3.39)

(a) Assume there exists a z such that Az = b. How many solutions of the equation Ax = b
are there?

35

RECHT AND WRIGHT

(b) If you run the gradient method on (3.39) starting at x0 = 0, how many iterations are
required to find a solution with 1

n‖Ax− b‖
2 ≤ ε?

(c) Consider the regularized problem

minimize `µ(x) :=
1

n
‖Ax− b‖2 + µ‖x‖2 . (3.40)

where µ is some positive scalar. Let x(µ) denote the minimizer of (3.40). Compute a
closed form formula of x(µ).

(d) If you run the gradient method on (3.40) starting at x0 = 0, how many iterations are
required to find a solution with `µ(x)− `µ(x(µ)) ≤ ε?

(e) Suppose x̂ satisfies `µ(x̂)− `µ(x(µ)) ≤ ε. Come up with as tight an upper bound as you
can on the quantity 1

n‖Ax̂− b‖
2.

10. Modify the Extrapolation-Bisection Line Search (Algorithm 3.1) so that it terminates at a
point satisfying strong Wolfe conditions, which are

f(xk + αdk) ≤ f(xk) + c1α∇f(xk)Tdk, (3.41a)

|∇f(xk + αdk)Tdk| ≤ c2|∇f(xk)Tdk| , (3.41b)

where c1 and c2 are constants that satisfy 0 < c1 < c2 < 1. (The difference with the weak
Wolfe conditions (3.41) is that the directional derivative ∇f(xk+αdk)Tdk is not only bounded
below by c2|∇f(xk)Tdk| but also bounded above by this same quantity. That is, it cannot be
too positive. (Hint: You should test separately for the two ways in which (3.41b) is violated,
that is, ∇f(xk+αdk)Tdk < −c2|∇f(xk)Tdk| and∇f(xk+αdk)Tdk > c2|∇f(xk)Tdk|. Different
adjustments of L, α, and U are required in these two cases.)

36

