
Chapter 2

Foundations

We outline in this chapter the foundations of the algorithms and theory discussed in later chapters.
These foundations include a review of Taylor’s theorem and its consequences that form the basis
of much of smooth nonlinear optimization. We also provide a concise review of elements of convex
analysis that will be used throughout the book.

2.1 A Taxonomy of Solutions to Optimization Problems

Before we can begin designing algorithms, we must determine what it means to solve an optimiza-
tion problem. Suppose that f is a function mapping some domain D ⊂ Rn to the real line R. We
have the following definitions.

• x∗ ∈ D is a local minimizer of f if there is a neighborhood N of x∗ such that f(x) ≥ f(x∗)
for all x ∈ N ∩ D.

• x∗ ∈ D is a global minimizer of f if f(x) ≥ f(x∗) for all x ∈ D.

• x∗ ∈ D is a strict local minimizer if it is a local minimizer and in addition f(x) > f(x∗) for
all x ∈ N with x 6= x∗.

• x∗ is an isolated local minimizer if there is a neighborhood N of x∗ such that f(x) ≥ f(x∗)
for all x ∈ N ∩ D and in addition, N contains no local minimizers other than x∗.

For the constrained optimization problem

min
x∈Ω

f(x), (2.1)

where Ω ⊂ D ⊂ Rn is a closed set, we modify the terminology slightly to use the word “solution”
rather than “minimizer.” That is, we have the following definitions.

• x∗ ∈ Ω is a local solution of (2.1) if there is a neighborhood N of x∗ such that f(x) ≥ f(x∗)
for all x ∈ N ∩ Ω.

• x∗ ∈ Ω is a global solution of (2.1) if f(x) ≥ f(x∗) for all x ∈ Ω.
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One of the immediate challenges is to provide a simple means of determining whether a par-
ticular point is a local or global solution. To do so, we first review a powerful tool familiar from
calculus: Taylor’s theorem. As we will see, Taylor’s theorem is the most important theorem in all
of continuous optimization. In the next section, we will temporarily turn away from optimization
and dive into a review Taylor’s theorem in the setting of multivariable calculus. This will let us
derive some fundamental lemmas that are the core tools for algorithm analysis.

2.2 Taylor’s Theorem

Taylor’s theorem shows how smooth functions can be approximated locally by low-order (linear or
quadratic) functions.

Theorem 2.1. Given a continuously differentiable function f : Rn → R, and given x, p ∈ Rn, we
have that

f(x+ p) = f(x) +

∫ 1

0
∇f(x+ γp)T p dγ, (2.2)

f(x+ p) = f(x) +∇f(x+ γp)T p, some γ ∈ (0, 1). (2.3)

If f is twice continuously differentiable, we have

∇f(x+ p) = ∇f(x) +

∫ 1

0
∇2f(x+ γp)p dγ, (2.4)

f(x+ p) = f(x) +∇f(x)T p+
1

2
pT∇2f(x+ γp)p, some γ ∈ (0, 1). (2.5)

(We sometimes call the relation (2.2) the “integral form” and (2.3) the “mean-value form” of
Taylor’s theorem.)

A consequence (2.3) is that for f continuously differentiable at x, we have

f(x+ p) = f(x) +∇f(x)T p+ o(‖p‖). (2.6)

We prove this claim by manipulating (2.3) as follows:

f(x+ p) = f(x) +∇f(x+ γp)T p

= f(x) +∇f(x)T p+ (∇f(x+ γp)−∇f(x))T p

= f(x) +∇f(x)T p+O(‖∇f(x+ γp)−∇f(x)‖‖p‖)
= f(x) +∇f(x)T p+ o(‖p‖),

where the last step follows from continuity: ∇f(x+ γp)−∇f(x)→ 0 as p→ 0, for all γ ∈ (0, 1).

As we will see throughout this text, a crucial quantity in optimization is the Lipschitz constant
L for the gradient of f , which is defined to satisfy

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, for all x, y ∈ dom (f). (2.7)

We say that a continuously differentiable function f with this property is L-smooth.
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From (2.2), we have

f(y)− f(x)−∇f(x)T (y − x) =

∫ 1

0
[∇f(x+ γ(y − x))−∇f(x)]T (y − x) dγ.

By using (2.7), we have

[∇f(x+ γ(y − x))−∇f(x)]T (y − x) ≤ ‖∇f(x+ γ(y − x))−∇f(x)‖‖y − x‖ ≤ Lγ‖y − x‖2.

By substituting this bound into the previous integral, we obtain the following.

Lemma 2.2. Given an L-smooth function f , we have for any x, y ∈ dom (f) that

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2. (2.8)

Lemma 2.2 asserts that f can be upper bounded by a quadratic function whose value at x is
equal to f(x).

When f is twice continuously differentiable, we can characterize the constant L in terms of the
eigenvalues of the Hessian ∇2f(x). Specifically, we have

−LI � ∇2f(x) � LI, for all x (2.9)

as the following result proves.

Lemma 2.3. Suppose f is twice continuously differentiable on Rn. Then if f is L-smooth, we have
∇2f(x) � LI for all x. Conversely, if −LI � ∇2f(x) � LI, then f is L-smooth.

Proof. From (2.8), we have by setting y = x+ αp for some α > 0 that

f(x+ αp)− f(x)− α∇f(x)T p ≤ L

2
α2‖p‖2.

From formula (2.5) from Taylor’s theorem, we have

f(x+ αp)− f(x)− α∇f(x)T p =
1

2
α2pT∇2f(x+ γαp)p.

By comparing these two expressions, we obtain

pT∇2f(x+ γαp)p ≤ L‖p‖2.

By letting α ↓ 0, we have that all eigenvalues of ∇2f(x) are bounded by L, so that ∇2f(x) � LI,
as claimed.

Suppose now that −LI � ∇2f(x) � LI for all x, so that ‖∇2f(x)‖ ≤ L for all x. We have from
(2.4) that

‖∇f(y)−∇f(x)‖ =

∥∥∥∥∫ 1

t=0
∇2f(x+ t(y − x))(y − x) dt

∥∥∥∥
≤
∫ 1

t=0
‖∇2f(x+ t(y − x))‖‖y − x‖ dt

≤
∫ 1

t=0
L‖y − x‖ dt = L‖y − x‖,

as required. This completes the proof.
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2.3 Characterizing Minima of Smooth Functions

The results of Section 2.2 give us the tools needed to characterize solutions of the unconstrained
optimization problem

min
x∈Rn

f(x), (2.10)

where f is a smooth function.
We start with necessary conditions, which give properties of the derivatives of f that are satisfied

when x∗ is a local solution. We have the following result.

Theorem 2.4 (Necessary Conditions for Smooth Unconstrained Optimization).

(a) Suppose that f is continuously differentiable. Then if x∗ is a local minimizer of (2.10), then
∇f(x∗) = 0.

(b) Suppose that f is twice continuously differentiable. Then if x∗ is a local minimizer of (2.10),
then ∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite.

Proof. We start by proving (a). Suppose for contradiction that ∇f(x∗) 6= 0, and consider a step
−α∇f(x∗) away from x∗, where α is a small positive number. By setting p = −α∇f(x∗) in formula
(2.3) from Theorem 2.1, we have

f(x∗ − α∇f(x∗)) = f(x∗)− α∇f (x∗ − γα∇f(x∗))T ∇f(x∗), for some γ ∈ (0, 1). (2.11)

Since ∇f is continuous, we have that

∇f (x∗ − γα∇f(x∗))T ∇f(x∗) ≥ 1

2
‖∇f(x∗)‖2,

for all α sufficiently small, and any γ ∈ (0, 1). Thus by substituting into (2.11), we have that

f(x∗ − α∇f(x∗)) = f(x∗)− 1

2
α‖∇f(x∗)‖2 < f(x∗),

for all positive and sufficiently small α. This it is impossible to choose a neighborhood N of x∗

such that f(x) ≥ f(x∗) for all x ∈ N , so x∗ is not a local minimizer.
We now prove (b). It follows immediately from (a) that ∇f(x∗) = 0, so we need to prove

only positive semidefiniteness of ∇2f(x∗). Suppose for contradiction that ∇2f(x∗) has a negative
eigenvalue, so there exists a vector v ∈ Rn and a positive scalar λ such that vT∇2f(x∗)v ≤ −λ. We
set x = x∗ and p = αv in formula (2.5) from Theorem 2.1, where α is a small positive constant, to
obtain

f(x+αv) = f(x∗) + α∇f(x∗)T v +
1

2
α2vT∇2f(x∗ + γαv)v, for some γ ∈ (0, 1). (2.12)

For all α sufficiently small, we have for λ defined above that vT∇2f(x∗ + γαv)v ≤ −λ/2, for all
γ ∈ (0, 1). By substituting this bound together with ∇f(x∗) = 0 into (2.12), we obtain

f(x∗ + αv) = f(x∗)− 1

4
α2λ < f(x∗),

for all sufficiently small, positive values of α. Thus there is no neighborhood N of x∗ such that
f(x) ≥ f(x∗) for all x ∈ N , so x∗ is not a local minimizer. Thus we have proved by contradiction
that ∇2f(x∗) is positive semidefinite.
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Condition (a) in Theorem 2.4 is called the first-order necessary condition, because it involves the
first-order derivatives of f . For obvious reasons, condition (b) is called the second-order necessary
condition.

We additionally have the following second-order sufficient condition.

Theorem 2.5 (Sufficient Conditions for Smooth Unconstrained Optimization). Suppose that f is
twice continuously differentiable and that for some x∗, we have ∇f(x∗) = 0 and ∇2f(x∗) is positive
definite. Then x∗ is a strict local minimizer of (2.10).

Proof. We use formula (2.5) from Taylor’s theorem. Define a radius ρ sufficiently small and positive
such that the eigenvalues of ∇2f(x∗ + γp) are bounded below by some positive number ε, for all
p ∈ Rn with ‖p‖ ≤ ρ, and all γ ∈ (0, 1). (Because ∇2f is positive definite at x∗ and continuous,
and because the eigenvalues of a matrix are continuous functions of the elements of a matrix, it is
possible to choose ρ > 0 and ε > 0 with these properties.) By setting x = x∗ in (2.5), we have

f(x∗ + p) = f(x∗) +∇f(x∗)T p+
1

2
pT∇2f(x∗ + γp)p ≥ f(x∗) +

1

2
ε‖p‖2, for all p with ‖p‖ ≤ ρ.

thus by setting N = {x∗+p | ‖p‖ < ρ}, we have found a neighborhood of x∗ such that f(x) > f(x∗)
for all x ∈ N with x 6= x∗, thus satisfying the conditions for a strict local minimizer.

The sufficiency promised by Theorem 2.5 only guarantees a locally optimal solution. We now
turn to a class of functions where we can provide necessary and sufficient guarantees for optimality
using only information from low order derivatives.

2.4 Convex Sets and Functions

Convex functions take a central role in optimization precisely because these are the instances for
which it is easy to verify optimality and, as we will see, for which such optima are guaranteed to
be discoverable with a reasonable amount of computation.

A convex set Ω ⊂ Rn has the property that

x, y ∈ Ω ⇒ (1− α)x+ αy ∈ Ω for all α ∈ [0, 1]. (2.13)

For all pairs of points (x, y) contained in Ω, the line segment between x and y is also contained in
Ω. The convex sets that we consider in this book are usually closed.

The defining property of a convex function is the following inequality:

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y), for all x, y ∈ Rn and all α ∈ [0, 1]. (2.14)

The line segment connecting (x, f(x)) and (y, f(y)) lies entirely above the graph of the function f .
In other words, the epigraph of f , defined as

epi f := {(x, t) ∈ Rn+1 | t ≥ f(x)} (2.15)

is a convex set.
The concepts of “minimizer” and “solution” for the case of convex objective function and

constraint set are simpler than for the general case. In particular, the distinction between “local”
and “global” solutions goes away, as we show now.
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Theorem 2.6. Suppose that in (2.1), the function f is convex and the set Ω is closed and convex.
We have the following.

(a) Any local solution of (2.1) is also a global solution.

(b) The set of global solutions of (2.1) is a convex set.

Proof. For (a), suppose for contradiction that x∗ ∈ Ω is a local solution but not a global solution,
so there exists a point x̄ ∈ Ω such that f(x̄) < f(x∗). Then by convexity we have for any α ∈ (0, 1)
that

f(x∗ + α(x̄− x∗)) ≤ (1− α)f(x∗) + αf(x̄) < f(x∗).

But for any neighborhood N , we have for sufficiently small α > 0 that x∗ + α(x̄ − x∗)) ∈ N ∩ Ω
and f(x∗ + α(x̄− x∗)) < f(x∗), contradicting the definition of a local minimizer.

For (b), we simply apply the definition of convexity for both sets and functions. Given any
global solutions x∗ and x̄, we have f(x̄) = f(x∗), so for any α ∈ [0, 1] we have

f(x∗ + α(x̄− x∗)) ≤ (1− α)f(x∗) + αf(x̄) = f(x∗).

We have also that f(x∗+α(x̄−x∗)) ≥ f(x∗), since x∗+α(x̄−x∗) ∈ Ω and x∗ is a global minimizer.
It follows from these two inequalities that f(x∗+α(x̄− x∗)) = f(x∗), so that x∗+α(x̄− x∗) is also
a global minimizer.

By applying Taylor’s theorem (in particular, (2.6)) the left-hand side of the definition of con-
vexity (2.14), we obtain

f(x+ α(y − x)) = f(x) + α∇f(x)T (y − x) + o(α) ≤ (1− α)f(x) + αf(y).

By cancelling the f(x) term, rearranging, and dividing by α, we obtain

f(y) ≥ f(x) +∇f(x)T (y − x) + o(1),

and when α ↓ 0, the o(1) term vanishes, so we obtain

f(y) ≥ f(x) +∇f(x)T (y − x), for any x, y ∈ dom (f), (2.16)

which is a fundamental characterization of convexity of a smooth function.

While Theorem 2.4 provides a necessary link between the vanishing of ∇f and the minimizing
of f , the first-order necessary condition is actually a sufficient condition when f is convex.

Theorem 2.7. Suppose that f is continuously differentiable and convex. Then if ∇f(x∗) = 0, then
x∗ is a global minimizer of (2.10).

Proof. The proof of the first part follows immediately from condition (2.16), if we set x = x∗. Using
this inequality together with ∇f(x∗) = 0, we have for any y that

f(y) ≥ f(x∗) +∇f(x∗)T (y − x∗) = f(x∗),

so that x∗ is a global minimizer.
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2.5 Strongly Convex Functions

For the remainder of this section, we assume that f is continuously differentiable and also convex.
If there exists a value m > 0 such that

φ((1− α)x+ αy) ≤ (1− α)φ(x) + αφ(y)− 1

2
mα(1− α)‖x− y‖22 (2.17)

for all x and y in the domain of φ, we say that φ is strongly convex with modulus of convexity m.
When f is differentiable, we have the following equivalent definition, obtained by working on (2.17)
with a similar argument to the one above:

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖2. (2.18)

Note that this inequality complements the inequality satisfied by functions with smooth gradients.
When the gradients are smooth, a function can be upper bounded by a quadratic which takes the
value f(x) at x. When the function is strongly convex, it can be lower bounded by a quadratic
which takes the value f(x) and x.

We have the following extension of Theorem 2.7, whose proof follows immediately by setting
x = x∗ in (2.18).

Theorem 2.8. Suppose that f is continuously differentiable and strongly convex. Then if ∇f(x∗) =
0, then x∗ is the unique global minimizer of f .

This approximation of convex f by quadratic functions is one of the most central themes in
continuous optimization. Note that when f is strongly convex and twice continuously differentiable,
(2.5) implies the following, when x∗ is the minimizer:

f(x)− f(x∗) =
1

2
(x− x∗)T∇2f(x∗)(x− x∗) + o(‖x− x∗‖2). (2.19)

Thus, f behaves like a strongly convex quadratic function in a neighborhood of x∗. It follows
that we can learn a lot about local convergence properties of algorithms just by studying convex
quadratic functions, and we use quadratic functions as a guide for both intuition and algorithmic
derivation throughout.

Just as we could characterize the Lipschitz constant of the gradient in terms of the eigenvalues
of the Hessian, the strong convexity parameter provides a lower bound on the eigenvalues of the
Hessian when f is twice continuously differentiable. That is, we have the following

Lemma 2.9. Suppose that f is twice continuously differentiable on Rn. Then f has modulus of
convexity m if and only if ∇2f(x) � mI for all x.

Proof. For any x, u ∈ Rn and α > 0, we have from Taylor’s theorem that

f(x+ αu) = f(x) + α∇f(x)T +
1

2
α2uT∇2f(x+ tαu)u, for some t ∈ (0, 1).

From the strong convexity property, we have

f(x+ αu) ≥ f(x) + α∇f(x)T +
m

2
α2‖u‖2.
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By comparing these two expressions, cancelling terms, and dividing by α2, we obtain

uT∇2f(x+ tαu)u ≥ m‖u‖2.

By taking α ↓ 0, we obtain uT∇2f(x)u ≥ m‖u‖2, thus proving that ∇2f(x) � mI.
For the converse, suppose that ∇2f(x) � mI for all x. Using the same form of Taylor’s theorem

as above, we obtain

f(z) = f(x) +∇f(x)T (z − x) +
1

2
(z − x)T∇2f(x+ t(z − x))(z − x), for some t ∈ (0, 1).

We obtain the strong convexity expression when we bound the last term as follows:

(z − x)T∇2f(x+ t(z − x))(z − x) ≥ m‖z − x‖2,

completing the proof.

The following corollary is a immediate consequence of Lemma 2.3.

Corollary 2.10. Suppose that the conditions of Lemma 2.3 hold, and in addition that f is convex.
Then 0 � ∇2f(x) � LI if and only if f is L-smooth.

Notation

We list key notational conventions that are used in the rest of the book.

• We use ‖ · ‖ to denote the Euclidean norm ‖ · ‖2 of a vector in Rn. Other norms, such as ‖ · ‖1
and ‖ · ‖∞, will be denoted explicitly.

• Given two sequences of nonnegative scalars {ηk} and {ζk}, with ζk →∞, we write ηk = O(ζk)
if there exists a constant M such that ηk ≤Mζk for all k sufficiently large. The same definition
holds if ζk → 0.

• For sequences {ηk} and {ζk} as above, we write ηk = o(ζk) if η)k/ζk → 0 as k → ∞. We
write ηk = Ω(ζk) if both ηk = O(ζk) and ζk = O(ηk).

Sources and Further Reading

Exercises

1. Prove that the effective domain of a convex function is a convex set.

2. Prove that epi f is a convex subset of Rn+1 for any convex function f .

3. Show rigorously how (2.18) is derived from (2.17) when f is continuously differentiable.
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