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Presenters: Nick Boyd and Nick Altieri

This weeks theme was importance sampling. We looked at how it can be applied to
k-means ++ and universal ε-approximations for integrals.

1 k-means++: The Advantages of Careful Seeding

The goal is to represent a large set of data by k clusters. Begin with the potential func-
tion:

φ(z, ck1) =

n∑
i=1

k∑
j=1

1(zi = j)‖xi − cj‖22

where z ∈ {1, 2, ...k}n and ci ∈ Rn

The data is summarized with k vectors. Each point xi in the set is represented as one of
the k vectors {c1, ..., ck}. The loss for doing this is ‖xi − cj‖22. z are the optimal clusters
and c are the centers. Note the duality between z and c: given the centers, the decision
boundaries for optimal clusters can be found and given the clusters, the optimal center
can be found. Thus we can write φ(z). This problem is non-convex and NP hard to
solve. A common method to determine centers is Lloyd’s method described in the next
section.

1.1 Lloyd’s Method

Lloyd’s method is as follows:

1. Choose k initial centers by uniformly sampling from all points.

2. For each center ci, set the corresponding cluster zi to be the set of points such that all
points in zi are closest to ci.

3. Set the new centers to be the center of mass of the clusters.

4. Repeat steps 2 and 3.

Lloyd’s method works okay in practice, but there are many sets of points we can construct
where Lloyd’s method will likely fail. For example, consider the set of data below:
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In step 1, it is likely that centers are not chosen from each cluster, and Lloyd’s method will
yield results far from optimal. The k-means++ algorithm addresses this by introducing a
different sampling method.

1.2 k-means++

Define Dc(x) = minj‖xi − xj‖2 and note that φ(c) =
n∑
i=1

D2
c (xi). Now choose one center,

c1 uniformly from the set, then choose the next center such that P (cj = xi) ∝ D2(xi).
Once these centers have been determined, Lloyd’s method can be used. Sampling using
the above scheme means that once a center ci is picked, points further away from this
center and thus not in the corresponding cluster are more likely to be picked. In short, the
method aims to select starting centers in each cluster. At this point, we asked what Dc

would look like if we thought of the objective function as a Guassian mixture probability.
The result is:

maxz(log(p(xi, zi|c) ∝ −D2
c (xi))

The expected value of the objective function determined using this new sampling method
has the following bound: E[φ(c)] ≤ 8*ln(k+2)φ(c*) where c* is the optimal clustering. To
understand the bounds on the expected value, first consider the contribution to the cost of
a set of points A in the set:

φ(c, A) =
∑
x∈A

minj‖cj − x‖22

If A consists of all the points, then the above is just our objective function. Now con-
sider:

E[φ(ci, c1*)|ci ∈ c1*]

= E[
∑
x∈C1*

‖cj − x‖22|ci ∈ c1*]
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=
∑

ci∈C1*

1

|c1*|
∑
x∈C1*

‖cj − x‖22

Before continuing, note the following lemma:

Consider a set of points S ∈ x:

∑
x∈S

= ‖x− z‖22 =
∑
x∈S
‖x− s̄‖22 + |c|‖s̄− z‖22

This can be proven by expanding out the inner products. Using this:

∑
c1∈C1*

1

|c1*|
[φ(c*, c1*) + |c1|2‖c1 − c*‖22]

= 2φ(c*, c1*)

Now consider we have chosen c centers and choose the next center,c′. It can be shown
that:

φ([c, c′], C*)|c′ ∈ C*] ≤ 8φ(c*, C*)

=
∑
x∈C

min(Dc(x), ‖x− c′‖2)2|c′ ∈ C*]

The minimum in the sum means that the cost is less if x is closer to the added point
c′.

=
∑
c′∈C*

D2
c (c
′)∑

z
D2
c (x)

∑
x ∈ C*min(Dc(x), ‖x− c′‖2)2

In order to continue, we need to bound D2
c (c
′).

Dc(c
′) = mini‖ci − c′| ≤ min(‖c1 − x‖+ ‖x− c′‖(for all x) = Dc(x) + ‖x− c′‖

D2
c (c
′) can be bounded using Jensen’s inequality which leads to:

D2
c (c
′) ≤ 2D(x)2 + 2‖x− c′‖2
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Averaging over x ∈ C* leads to

D2
c (c
′) ≤ 2

|c*|
[
∑
x∈C*

D(x)2 + ‖x− c′‖2]

Plugging this back in, everything cancels and works!

The sampling method increases the chances that a point will be picked in every cluster. If a
point in every cluster is chosen, the solution is competitive with the optimal solution.

2 Universal epsilon-approximations for integrals

Consider the means function define fU1 , ...fUk
= mini‖x− ui‖α. This function class is Fα.

We should like to choose a set of points R ∈ S such that for all f in F ,
∑
x∈R

f(x)υ(x) ∈

(1± ε)
∑
x ∈ Sf(x). Professor Recht has discussed unreasonably effective algorithms and

Nick (the presenter) argued that there are some algorithms that are offensively effective,
such as uniformly sampling. Thus, before we continue we should consider if uniformly
sampling will work. However, for similar reasons discussed in the previous paper, uniformly
sampling will not necessarily work well, so we need to do something smarter.

Note that for any distribution function:

E[f ] =
1

n

∑
x∈S

f(x) =
∑
x∈S

f(x)

nq(x)
q(x)

If we sample via q(x) and compute Tf (x) = f(x)
nq(x) , Tf (x) will be an unbiased estimator of

E[f ]. However, we must also consider the variance.

Define the sensitivity of a function be defines as σ(f) as supf∈F
f(x)
f .

At this point, we went on a short aside about taking the sup of a function. Professor Recht
had us consider evaluating the following:

supx
(aix− b1)2
n∑
i=1

(aix− b1)2

where ‖Ax − b‖ is an overdetermined system. The final result is just the leverage scores

‖V T ei‖2 where the US2V =
n∑
i=1

aia
T
i . Intuitively, taking the supremum of a function will
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keep around the big terms. Hence, the sensitivity looks at how much each x contributes to
the objective function.

Let the total sensitivity of a function class be S =
∑
x∈S

1
nσF (x). Let sF (x) ≥ σF (x) and

S(F ) =
∑
x∈S

1
nsF (x).

Pick q(x) sensitivity such that q(x) = SF (x)
nS(F ) .

After choosing q(x) , we can evaluate the variance.

Theorem: V ar(Tf ) ≤ (S(F )− 1)f̄2

Proof:
1

f̄2
V ar(Tf ) =

1

f̄2

∑
x ∈ S(

f(x)

nq(x)
− f̄)2q(x)

=
1

f̄2

∑
x∈S

(
sF (x)

nS(F )
) ∗ (

f(x)S(F )

sF (x)
)− f̄))2.

Expanding and simplifying this becomes:

1

f̄2

∑
x∈S

(
f(x)2S(F )

nsF (x)
)− 2 + 1

Note that for any f ∈ F and x ∈ X, f(x) ≤ sF (x)f̄ . Therefore,

1

f̄

2 ∑
x∈S

1

n
f(x)f̄S(F )− 1 = S(F )− 1

If we choose a random sample R w.r.t distribution q(x) with |R| = a ∗ (2(S−1)
ε2

), then

Pr[|f̄ − 1

a

∑
x∈R

(
S(F )f(x)

s(x)
| ≥ εf̄ ] ≤ 1

2

Proof:

Recall the Chebyshev inequality: P [|x− µ| ≥ kσ] ≤ 1
k2
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σ =

√
V ar(

1

a

∑
x∈R

T (x)) ≤
√

1

a
(S(F )− 1)f̄2

=

√
ε2(S(F )− 1)f̄2

2(S(F )− 1)
=

εf̄√
2

Pr[|f̄ − 1

a

∑
x∈R

(
S(F )f(x)

s(x)
| ≥ εf̄ ] ≤ 1

2

After this proof, there was some discussion on using Chebyshev as a bound and if a Ho-
effding inequality could be used as a better bound.

3 Conclusion

In this lecture, we saw how importance sampling can perform better than uniform sampling
in k-means and approximation of integrals. The underlying principle in each paper is
that samples that contribute more, or are of more importance, should be more heavily
weighted.
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