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Lecture 1

1 Introduction

Today’s lecture is about solving the following optimization problem:

min
x∈X

Eξ [f(x, ξ)] ≡ min
x∈X

F(x),

where X is a (relatively) simple set and ξ is some well-behaved random variable. Some well-known
instances of this problem are:

• Training an SVM;

• Lasso;

• Matrix-completion;

• M-estimation (of which above three are special cases);

• Graph problems:

– Matching

– Cuts

– Flows

Remark (Ben). Is “big data” just M-estimation?

Remark (Tamara). Is variational Bayes an M-estimation problem? Variational Bayes objective:

max
θ∈Θ

Eq(θ)

[
log

p(x, θ)

q(θ)

]
.

Here the setup is a bit different in that the density q(θ) depends on the variable being optimized.

Goal of today: identify a general algorithm to solve (1).

2 Sample average approximation

A natural algorithm is:

1. Sample i.i.d. ξ1, . . . , ξn ∼ p for some density p. (Assume that p(ξ) is not a function of x ∈X .)

2. Solve

x̂ ∈ arg min
x∈X

1

n

n∑
i=1

f(x, ξi). (1)
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This is known as sample average approximation.

Example 1. ξi ∼ N (0, 1), f(x, ξ) = (x − ξ)2. The optimum is x∗ = 0, and it is easy to see that
x̂ = 1

n

∑n
i=1 ξi, the sample average. So the SAA converges to the truth at rate O(n−1).

What are good error metrics to use?

1. Objective distance: ‖F(x̂)−F(x∗)‖

2. Parameter distance: ‖x̂− x∗‖.

3. Some other arbitrary function err(x̂, x∗).

All three of these are functions of the sampled data, so you have to, for example, look at them in
expectation or bound large deviations.

Note that the optimization (1) introduces another source of error. We actually obtain x̃, where
F(x̃) ≈ maxF(x). So our actual error “decomposes” as

error = ‖x̃− x̂‖︸ ︷︷ ︸
optimization error

+ ‖x̂− x∗‖︸ ︷︷ ︸
statistical error

In instructor’s experience, error matters in practice. This is why you randomly re-order the
samples and re-run the algorithm. Example: matrix completion can require 10-20 passes over the
data. The actual data does not meet the assumptions of the analysis; in particular the data are
not i.i.d.

3 Stochastic Gradient

The basic idea:
xk+1 ≡ xk − αk∇f(xk, ξk).

Idea is the same as gradient descent—follow ∇f downhill—only now you have a noisy idea of what
downhill is.

Exercise 2. Let αk = 1
k+1 , x1 = 0, f(x, ξ) = 1

2(x− ξ)2. Show that SGD chooses xk = 1
k

∑k
i=1 ξi.

3.1 Adaptive filtering

In adaptive filtering, αk = const. The Kurtz et al. paper says that in this case, xk+1 = xk+αg(xk, ξ)
looks like a finite difference approximation to an ODE. So they integrate the ODE and solve; this
is known as the ODE method. Step sizes satisfy

∑
αk → ∞ but αk → 0. The analysis doesn’t

require any convexity assumptions on f .

3.2 Robust stochastic approximation

See Nemirovski, Juditsky, Lan, and Shapiro (2009). Assumptions:
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• F is strongly convex:

F(z) ≥ F(x) +∇F(x)T (z − x) +
`

2
‖x− z‖22

for some ` > 0.

• Gradients are Lipschitz:
‖∇F(z)−∇F(x)‖ ≤ L ‖z − x‖ .

(Equivalent statement for subgradients is that they are bounded.)

• E
[
‖∇f(x, ξ)‖2

]
≤M2 for some M .

• ∇F(x∗) = 0, i.e. x∗ ∈X o.

Proof sketch: let
xk+1 = ΠX [xk − αk∇f(xk, ξk)]

where ΠX (y) projects the point y into X . This gives:

‖xk+1 − x∗‖2 = ‖ΠX (xk − αk∇f(xk, ξk)−ΠX (x∗)‖2

≤ ‖xk − αk∇f(xk, ξk)− x∗‖2

= ‖xk − x∗‖2 − 2αk 〈xk − x∗,∇f(xk, ξk)〉+ |αk|2 ‖∇f(xk, ξk)‖2

where the inequality follows since ΠX is contractive. Taking expectations, we get

ak+1 ≤ ak − αkE 〈xk − x∗,∇f(xk, ξk)〉+ |αk|2
M2

2

= ak − αkE 〈xk − x∗,∇F(xk)〉+ |αk|2
M2

2
.

where we have defined ak ≡ E
[
‖xk+1 − x∗‖2

]
. The equality of the middle terms follows because

xk ∈ σ(ξ1, . . . , ξk−1):

E 〈xk − x∗,∇f(xk, ξk)〉 = E [Eξk (〈xk − x∗,∇f(xk, ξk)〉 | ξ1, . . . , ξk−1)]

= E 〈xk − x∗,∇F(xk)〉 .

To finish the proof note that, by applying the first and last assumptions,

E [〈∇F(xk), xk − x∗〉] ≥ E
[
F(xk)−F(x∗) +

`

2
‖xk − x∗‖2

]
≥ ` ‖xk − x∗‖2 .

Putting it all together,

ak+1 ≤ (1− 2`αk)ak +
1

2
α2
kM

2.

With αk = 1/k we get ak → 0. With αk = C we get ak → αM2

4` : the expected mean squared error
does not go to zero. With slowly changing but constant step sizes you can get faster convergence
while still letting ak → 0.
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Now let x̄k =
∑k

i=1 xi. We have

EF(x̄k)−F(x∗) ≤ E

[
1

k

k∑
i=1

F(xi)

]
−F(x∗)

≤ E

[
1

k

k∑
i=1

〈F(xi), x
∗ − xi〉

]

=
a0 − ak
Kα

+
1

2
αM2

≤ ‖x0 − x∗‖2

Kα
+

1

2
αM2

(see dual averaging paper by Nestorov).

4 Kaczmarz Algorithm

We now assume f(x, ξ) = aTi x− bi. This implies that

‖∇f(x, ξ)−∇f(x∗, ξ)‖ ≤M ‖x− x∗‖ .

In the analysis of the previous section we now obtain the upper bound ak+1 ≤ (1−2`α+α2M2)ak,
so you get the exponential (aka linear) rate of convergince.

5 Research questions

Some potential research questions that came up during lecture:

1. Alternative methods of estimating error. For example, can you use bootstrap to estimate
large deviations of the error metric? See Rakhlin, Karthik, Hazan in COLT.

2. Replace bounds in the proof of robust stochastic approximation with conditions on the cor-
relation matrix of the ξi.
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