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Simplex: A Simple Algorithm
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We consider the problem of the minimum dis-
tance projection of a given point @ in n-dimen-
sional space onto the canonical simplex.

This problem can be formulated as follows:

n
. 2
min Z (x;,—a;)

i=1

n
s.t. le: 1,

i=1
x;20, Vi.

This is a problem that occurs in the setting of
credit risk, where one deals with stochastic
matrices that describe transition probabilities
between different credit ratings, and where one
wants to determine the roots of these matrices,
or close approximations to them. A recent
ARQ article by Kreinin and Sidelnikova (2001)
gives the genesis and a more complete descrip-
tion of this problem.

Solution

Without loss of generality we may assume that
ay2a,>...za,, since this is just a matter of

reordering the data. If x* denotes the optimum
solution, then the following lemmata allow us
to reduce the problem to a univariate one.

Lemma 1. There is an index m such that

% %
x;>0,for 1<i<m,and x; = 0, fori>m.

Proof. Suppose that we have a feasible solution
x with x; = 0 and x; 1 > O, for some index i.

Now, consider the solution x , constructed
from x by switching the ith and (i+1)th com-
ponents. This solution is feasible and has dis-
tance to the canonical simplex of
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d(x) = 2(a;, | —a)x;, +d(x).

But, as a,> 4, ,, we have constructed a solu-

tion with distance less then or equal to that of
the solution we started out with. This shows
that we can limit ourselves to feasible solutions
where a positive entry is never preceded by a
zero entry, and thus proves the lemma.

Lemma 2. All positive entries of x* are of the

.
form x; = a,+ .

Proof. If there is only one positive element in
x*, the lemma is trivial, so assume that there

* * ..
are two elements x; and x; that are positive.

Now consider the solution ¥, constructed from
x by perturbing the ith and jth components:

~ * ~ * .
%, =x;—e and X, = x; +e. For e sufficiently

close to zero, this gives a feasible solution with
distance to the canonical simplex of

d(%) = d(x)+ 2" +2e(x; —x; ~a;+ ).

* *
If x; —x; —a;+a,#0 holds, then one can always

choose € such that x has a lesser distance to
the canonical simplex than x*. But, this con-
tradicts the optimality of x*, and, thus, one

* * .
must have x; —a; = x; —a;, which proves the

lemma.

Combining the lemmata, one can reformulate
the problem as an optimization problem over A
and m.
n

2
> o

i=m+1

. 2
min mA~ +

m
s.t. mA\ + Zai=1
i=1
Az-a,,

me {1,2,...,n}.

Substituting for A reduces it to a problem over
the index m only:
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2

1 m "
min —|1- a.| +
m z 4
i=1

>

i=m+1

m

s.t. Z (a;—a,)<1,
i=1

me {1,2,...,n}.
Now, consider the sequence
m
S, = Z (a;—a,,) .

i=1

This sequence is non-decreasing, as can be
seen by formulating it in terms of the recursion

S,=S,_1t(m-1)(a,_,-a,),

m

with initial condition S, = 0. Denoting the

objective function by f(m), one can verify that
it satisfies the recursion

fim) = fim-1) - [-s1,

m(m—1)

with initial condition f(1)=1-2a,+Z]_ 1“;2 ,

and one immediately sees that the sequence
f(m) is non-increasing. These observations
allow us to solve the problem by determining
m* as the largest index m that satisfies 5, <1 .

Such an m* exists, since s, =0, and is easily
determined using the recursion for §, . This

then gives

= m 1-S .
b= %{lza[] Rl

i=1
and the optimum solution as

m*
1 .
1= . <i<m*
xf: a; m*l Zal, for 1<i<m=*,
i=1

0, for i>m*.

Note that the optimum value for m need not be
unique, as S,,» = 1 may hold.
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lllustrative example

To illustrate the algorithm, we use data from
the matrix given in Table 3 of the article by
Kreinin and Sidelnikova (2001). This matrix
represents the square root of an annual credit-
rating transition matrix, and contains negative
elements that one would like to eliminate in
order to obtain a six-month transition matrix.
We take its first row and determine the permu-
tation n that orders the elements in descend-
ing order to obtain the vector:

a = [0.947127, 0.051650, 0.001145,
0.000140, 0.000000, —0.000005,

—0.000006, —0.000050].

Applying the recursion to calculate S, we

obtain the sequence:

0, 0.895477, 0.996487, 0.999502,

1.00062, 1.000087, 1.000093, 1.000401,

so that m*=4. We can now calculate

% _
A = C155% 107 , and determine the opti-
mum projection as

x* = [0.9471115, 0.0516345, 0.0011295,

0.0001245, 0, 0, 0, 0],

with a distance of 3.522 x 1079. Applying the

inverse permutation © ' to x* renders the first
row of the regularized transition matrix. Apply-
ing the algorithm to the other rows of the
matrix, one obtains the six-month transition
matrix, as given in Table 4 of Kreinin and
Sidelnikova (2001).

Conclusions

In this Technical Note, we have considered
and solved the problem of determining the
minimum distance projection in the L,-norm
from an arbitrary point in an n—dimensional,
Euclidian space onto the canonical simplex. It
is shown that this problem reduces to a univari-
ate problem that can be solved by a simple
algorithm.
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Finally, it should be remarked that the lemmata
can also be derived through an application of
the celebrated Kuhn-Tucker conditions (see
Kuhn and Tucker 1951), but that we prefer to
present a derivation from first principles.
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