POINT-OF-CARE INFECTIOUS DISEASE TEST BASED ON CMOS TECHNOLOGY

Bernhard E. Boser boser@eecs.berkeley.edu

Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley

1

INFECTIOUS DISEASE - MORTALITY

Rank	Cause of death	Deaths 2002	Percentage of all deaths	Deaths 1993	1993 Rank
N/A	All infectious diseases	14.7 million	25.9%	16.4 million	32.2%
1	Lower respiratory infections ^[10]	3.9 million	6.9%	4.1 million	1
2	HIV/AIDS	2.8 million	4.9%	0.7 million	7
3	Diarrheal diseases ^[11]	1.8 million	3.2%	3.0 million	2
4	Tuberculosis (TB)	1.6 million	2.7%	2.7 million	3
5	Malaria	1.3 million	2.2%	2.0 million	4
6	Measles	0.6 million	1.1%	1.1 million	5
7	Pertussis	0.29 million	0.5%	0.36 million	7
8	Tetanus	0.21 million	0.4%	0.15 million	12
9	Meningitis	0.17 million	0.3%	0.25 million	8
10	Syphilis	0.16 million	0.3%	0.19 million	11
11	Hepatitis B	0.10 million	0.2%	0.93 million	6
12-17	Tropical diseases (6) ^[12]	0.13 million	0.2%	0.53 million	9, 10, 16-18

Worldwide mortality due to infectious diseases^[9]

Source: WHO/wikipedia

HIV PROBLEM

- Worldwide 33 million people are infected
- 1 in 4 people who have HIV in the US are unaware and are responsible for up to 75% of new infections
- The CDC recommends routine testing of everyone between the ages of 13 and 64

3

DIAGNOSING HIV

Current Procedure :

Procedure using Rapid Tests:

INFECTIOUS DISEASE TESTING: CURRENT SOLUTION

Beckman Coulter UniCel DxC 880i 400 immunoassay tests per hour

DEVELOPING WORLD

STRIP TESTS

- Simple, low cost, rapid
- Low sensitivity

7

STRIP TEST READOUT

 An example of a weakly positive results that is difficult to read

BASIS FOR INFECTIOUS DISEASE TESTS: ANTIGEN – ANTIBODY INTERACTIONS

: -

ANTIBODY-ANTIGEN TESTS ELISA (ENZYME-LINKED IMMUNOSORBENT ASSAY)

Antibody specific to target analyte (e.g. HIV virus)

10

ADD ANALYTE (E.G. BLOOD SERUM)

INCUBATE

WASH

Captured target

No target

ADD SECONDARY ANTIBODY

INCUBATE

WASH

Label bound to analyte

No labels present

16

ADD SUBSTRATE

17

QUANTIFY COLOR CHANGE

Substrate activated by label \rightarrow Color change

No color change

MICROFLUIDICS/LAB-ON-CHIP

- Reproduce laboratory protocols on a disposable cartridge
- Integration of valves, pumps, filters and mixers
- Requires external support to evaluate assay results

MAGNETIC "ELISA"

- 1. Retain antibody-antigen chemistry
- 2. Optical \rightarrow magnetic label
- 3. Hydrodynamic \rightarrow electromagnetic separation
- 4. Electronic detection

IMMUNO**S**ENSOR

- Blood from finger stick is placed on filter
- Cartridge is agitated and slotted into reader
- 10-20 minutes later, digital, quantitative results are displayed
- Offers ELISA sensitivity

TECHNOLOGY

MAGNETIC BEADS AS IMMUNO-LABELS

MAGNETIC BEADS AS IMMUNO-LABELS

Comparative Immunoassays Detecting Human IgG

Florescu et al., "On-chip magnetic washing of super-paramagnetic beads for ImmunoSensor integrated assay applications", Journal of Applied Physics, In Press (2009) ²⁵

$$\mathbf{m}_{\mathbf{bead}} = \chi_b V_b B_{applied} \mathbf{z} / z$$

$$\mathbf{B}_{\text{bead}} = \frac{\mu_o}{4\pi} \cdot \frac{3(\mathbf{r} \cdot \mathbf{m}_{\text{bead}})\mathbf{r} - (\mathbf{r} \cdot \mathbf{r})\mathbf{m}_{\text{bead}}}{r^5}$$

ImmunoSensor

:27

POST CMOS PROCESSING: EXPOSE SENSORS

POST CMOS PROCESSING: PROTECT PADS

POST CMOS PROCESSING: REMOVE METAL

POST CMOS PROCESSING: GOLD COATING

 $B_n = 300 nT/\sqrt{Hz}$

Matching < 5%, before auto-zeroing Matching < 0.05%, after auto-zeroing

ImmunoSensor

34

ImmunoSensor

A single 2.8um magnetic bead was detected with 35dB of SNR for a 1Hz noise bandwidth

Florescu et al., "Fully integrated detection of single magnetic beads in complementary metal-oxide-semiconductor", Journal of Applied Physics, Volume 103, Issue 4, pp. 046101-046101-3 (2008)

BSAC

35

INTEGRATED MAGNETIC BEAD CONCENTRATION

$$F_{mag} = \frac{V_{bead} \, \chi_{bead}}{\mu_o} \big(\mathbf{B}_{wash} \cdot \nabla \big) \mathbf{B}_{wash}$$

$$F_{mag} = \frac{\mu_o \cdot \chi_{bead} \cdot r_{bead} \cdot I_{wash}^2}{3\pi x_{bead}^3}$$

INTEGRATED MAGNETIC BEAD CONCENTRATION

$$I_{concentrate} = 2mA$$

$$F_{mag} = 0.2pN$$
from 4um away
$$60\% \text{ of beads}$$
land in center of trench
$$t = 0s$$

$$t = 30s$$

$$t = 60s$$

$$t = 60s$$

$$t = 90s$$

$$t = 120s$$

$$t = 120s$$

$$t = 150s$$

38

trench

$$F_{tether} = F_{mag} \sqrt{\frac{r_{bead}}{2L}}$$

L = 20nm

$$r_{bead} = 2.5 \mu m$$

Amplification = 8

 $I_{wash} = 50 mA$

F_{tether} = 9pN from 18μm away

$$\Delta T = T \left(1 - e^{-t/\tau} \right)$$

$$T=P_{in}(R_{th2,SiO2}+R_{th,Si})$$

 $\mathcal{T} = (R_{th2,SiO2} + R_{th2,SiO2} + R_{th,Si})C_{th,fluid}$

 $\Delta T = 2.7^{\circ}C$ after 30 seconds of washing

Florescu et al., "On-chip magnetic washing of super-paramagnetic beads for integrated assay applications", Journal of Applied Physics, In Press (2009)

Dengue Assay Results

INTEGRATED ASSAY PLATFORM

INTEGRATED ASSAY PLATFORM

MEMBRANE FILTRATION

MEMBRANE FILTRATION

- Hydrophilic polymeric membrane
 - Combination of PVP/PES
 - No hemolysis
 - No non-specific protein binding
- Graduated pore size
 - 35µm 2.5µm
 - $\sim 250 \mu m$ thick

48

FILTRATION VS. CENTRIFUGATION

BSAC

FILTRATION VS. CENTRIFUGATION

BEAD ASSAYS ON WHOLE BLOOD FILTRATE

Filtrate: Positive Control (1:1,000 dilution)

BEAD ASSAYS ON WHOLE BLOOD FILTRATE

Comparative Assay of Blood Filtrate

ImmunoSensor

BSAC

Multiplexed Assays

Low Cost Assay Kits

ImmunoSensor

Commercialization plan provided by Silicon BioDevices, Inc.

ACKNOWLEDGEMENTS

Collaborators:

- Octavian Florescu
- o Dr. Turgut Aytur
- o Dr. Mekhail Anwar
- Tomohiro Ishikawa
- Jonathan Foley
- Kevan Wang
- Paul Dier
- Moritz Mattman
- Prof. Robert Beatty
- Prof. Eva Harris
- Silicon BioDevices, Inc.

Funding from:

- Berkeley Sensor & Actuator Center
- Acumen foundation
- Trans-NIH Genes, Environment and Health Initiative grant U54 ES016115-01
- Pacific Southwest RCE NIH award AI065359

