1. Redo practice problem 14.3 in Alexander and Sadiku, 5h Edition for $H(\omega)=\frac{4(j \omega+3)}{j \omega(j \omega+20)}$.
2. (D-95) Complete the table below. Do not use a pocket calculator!

Voltage ratio x	$\mathrm{~dB}(x)$
2	6 dB
4	
32	
10	
40	
100	
0.001	
1.6	120
	-26
	-3

3. (D-98)
a) Draw the Bode Plot of $H(s)=\frac{V_{2}(s)}{V_{1}(s)}$ for $R_{1}=6.9 \mathrm{kOHm}$ and $C_{1}=2.7 \mathrm{nF}$. What is the response at the following frequencies?
Frequency Magnitude [dB], Phase [deg]

b) Repeat with the positions of the resistor and capacitor exchanged. What mathematical operation does this circuit perform?
Frequency Magnitude [dB], Phase [deg]

c) Draw the Bode Plot of the circuits from parts (a) and (b) in series.

4. (D-99) Draw the Bode plot (piecewise linear approximation) from 1 Hz to 1 MHz for the following transfer function:

$$
H(s)=\frac{s\left(1+\frac{s}{z_{1}}\right)}{z_{0}\left(1+\frac{s}{p_{1}}\right)\left(1+\frac{s}{p_{2}}\right)}
$$

with $s=j \omega$ and $z_{0}=2 \pi \times 10 \mathrm{~Hz}, z_{1}=2 \pi \times 10 \mathrm{kHz} p_{1}=2 \pi \times 1 \mathrm{kHz}, p_{2}=2 \pi \times 100 \mathrm{kHz}$. Label the axes!
5. (D-100) For the circuit below, calculate the magnitude $Z(s)$ between terminals (a, b). Use $R_{1}=6.3 \mathrm{k} \Omega$, $L_{1}=4.9 \mathrm{nH}, C_{1}=9.8 \mathrm{nF}$ and $C_{2}=4.9 \mathrm{pF}$.
Frequency Magnitude [Ω], Phase [deg]
1 Hz

1 kHz

6. Figure 1 shows the frequency response of the voltage gain of some amplifier.

For each of the following input voltages, find the steady-state output voltage.
a) $v_{\text {in }}(t)=\sin (t+1)$
b) $v_{i n}(t)=10$
c) $v_{\text {in }}(t)=10 \cos ^{2}(5 t)$ Hint: Write $\cos ^{2}(\cdot)$ as a sum of sinusoids.
7. Let $\mathbb{I}_{\text {in }}$ and $\mathbb{I}_{\text {out }}$ in Figure 2 be the phasors of the input current $I_{\text {in }}$ and the output current $I_{\text {out }}$ respectively.
a) Find the current gain of the circuit.

The current gain $\mathbb{G}(\omega)$ is the ratio of the phasors $\mathbb{I}_{\text {out }} / \mathbb{I}_{\text {in }}$.
b) With $R_{1}=1 \mathrm{~K} \Omega, R_{2}=5 \mathrm{k} \Omega, L=100 \mathrm{mH}, \mathrm{C}=3 \mu \mathrm{~F}$, sketch the magnitude frequency response of the current gain, i.e. plot $|G(\omega)|$ versus ω.
c) Is this a low/high/band pass filter?

Figure 1 Bode Diagram

Figure 2 RLC Circuit.

