- 1. Redo practice problem 9.9 in Alexander and Sadiku, 5h Edition. Changes: $4\Omega \rightarrow 3\Omega$, $0.2H \rightarrow 0.3H$. Other values from book.
- 2. Redo practice problem 9.11 in Alexander and Sadiku, 5h Edition. Change: $10 \Omega \rightarrow 8 \Omega$. Other values from book.
- 3. (D-87) Given:

$$y_1(t) = V_1 \cos(\omega t + \phi_1) \tag{1}$$

$$y_2(t) = V_2 \cos(\omega t + \phi_2) \tag{2}$$

Find *V* and ϕ for $y(t) = y_1(t) + y_2(t) = V \cos(\omega t + \phi)$. Use $V_1 = 6.9$ V, $V_2 = -8.7$ V, $\phi_1 = -20$ degrees and $\phi_2 = 72$ degrees.

y =

Report the magnitude of the amplitude (positive!) in V and phase in degrees, separated by a comma (e.g. 2V, -25deg).

- 4. (D-88) Find the phasor $I_1(s)$ of the steady-state response $i_1(t)$ of the circuit for $v_s = V_s \cos(2\pi f t)$. Use $V_s = 4.9$ V, f = 9.8 MHz, $R_1 = 44$ k Ω , and $L_1 = 3.6$ mH.
 - $I_1(s)$ (complex)

magnitude [A], phase [deg] of $I_1(s)$

- 5. (D-90) Derive phasors for the impedance $Z_1(s) = V_1(s)/I_1(s)$ and admittance $Y_1(s) = I_1(s)/V_1(s)$ for $v_s(t) = V_s \cos(2\pi f t)$. Use $V_s = 2.9$ V, f = 8.2 MHz, $C_1 = 3.8$ pF. The unit for admittance is Siemens (S).
 - magnitude [Ω], phase [deg] of $|Z_1(s)|$ magnitude [S], phase [deg] of $|Y_1(s)|$

6. (D-93) What are the magnitude and phase of the impedance of a capacitor $C_1 = 8.2 \text{ pF}$ at $f_1 = 1 \text{ kHz}$ and $f_2 = 1 \text{ GHz}$?

FrequencyMagnitude $[\Omega]$, Phase [deg] f_1 \Box

 f_2

How do capacitors behave at DC (f = 0) and very high frequency ($f \rightarrow \infty$)? What about inductors?

7. (D-94) A resistor $R = 7.3 \text{ k}\Omega$ and capacitor C = 2.2 nF connected in parallel have a 1 V sinusoidal signal across. At what frequency are the magnitudes of the currents flowing through the two elements equal?

Note: unless otherwise specified, report frequencies always in Hertz (Hz, kHz, etc), not in radians per second.

