This math is needed to analyze linear circuits (electronic and otherwise)!

1. Redo practice problem B. 1 in Alexander and Sadiku, 5h Edition. Changes: $z_{1}=4-j 3, z_{2}=4+j 11$. Other values from book.
2. Redo practice problem B. 2 in Alexander and Sadiku, 5h Edition. Changes: (a) $-7 \angle 200^{\circ}$, (c) $9 e^{-j 25^{\circ}}$.
3. Redo practice problem B. 4 in Alexander and Sadiku, 5h Edition. Change: (a) $3 \rightarrow 2$.
4. Redo practice problem B. 5 in Alexander and Sadiku, 5h Edition for $A=2-j 4$.
5. Redo practice problem 9.1 in Alexander and Sadiku, 5h Edition for $4 \sin \left(4 \pi t-60^{\circ}\right)$.
6. Redo practice problem 9.4 in Alexander and Sadiku, 5h Edition for $v=6 \cos \left(3 t+40^{\circ}\right)$ and $i=$ $-3 \sin \left(9 t+15^{\circ}\right)$.
7. Redo practice problem 9.6 in Alexander and Sadiku, 5 h Edition for $v_{1}=-5 \sin \left(\omega t-60^{\circ}\right) \mathrm{V}$.
8. Redo practice problem 9.8 in Alexander and Sadiku, 5 h Edition for $v=8 \cos \left(\omega t-60^{\circ}\right) \mathrm{V}$ and $\mathrm{C}=$ $20 \mu \mathrm{~F}$.
9. Shown below is the voltage and current of some circuit element.
a) Find $v(t)$ and $i(t)$.
b) Express these as phasors V and I.
c) Do these waveforms correspond to an inductor or a capacitor? What is the value of the inductance/capacitance?

