This math is needed to analyze linear circuits (electronic and otherwise)!

1. Redo practice problem B.1 in Alexander and Sadiku, 5h Edition. Changes: \(z_1 = 4 - j3 \), \(z_2 = 4 + j11 \). Other values from book.

2. Redo practice problem B.2 in Alexander and Sadiku, 5h Edition. Changes: (a) \(-7 \angle 200^\circ\), (c) \(9e^{-j25^\circ} \).

3. Redo practice problem B.4 in Alexander and Sadiku, 5h Edition. Change: (a) \(3 \rightarrow 2 \).

4. Redo practice problem B.5 in Alexander and Sadiku, 5h Edition for \(A = 2 - j4 \).

5. Redo practice problem 9.1 in Alexander and Sadiku, 5h Edition for \(4 \sin(4\pi t - 60^\circ) \).

6. Redo practice problem 9.4 in Alexander and Sadiku, 5h Edition for \(v = 6 \cos(3t + 40^\circ) \) and \(i = -3 \sin(9t + 15^\circ) \).

7. Redo practice problem 9.6 in Alexander and Sadiku, 5h Edition for \(v_1 = -5 \sin(\omega t - 60^\circ) \) V.

8. Redo practice problem 9.8 in Alexander and Sadiku, 5h Edition for \(v = 8 \cos(\omega t - 60^\circ) \) V and \(C = 20 \mu F \).

9. Shown below is the voltage and current of some circuit element.
 a) Find \(v(t) \) and \(i(t) \).
 b) Express these as phasors \(V \) and \(I \).
 c) Do these waveforms correspond to an inductor or a capacitor? What is the value of the inductance/capacitance?