
EE49 Fall 2018

Lab 4 Battery Power & Deepsleep

Name SID Checkoff

Objectives: Build power management system for ESP32 that can use a combination of a rechargeable
battery and energy from a solar cell. Explore methods to reduce the ESP32 power consumption that enable
extremely long autonomous operation using harvested power. from a solar cell.

Parts and Tools

For this laboratory you need the Lithium Polymer battery and the components from the last lab. You will
also use a programmable DC power supply. This is described below.

Figure 1: NI PXI-4110: Programmable DC Power Supply

In Hesse 122, the lab computers are connected to NI PXI-4110 made by National Instruments (see Figure
1). This device offers a DC voltage source. It can be programmed to set the supply voltage and to limit the
current draw. Use Channel 0 (red wire) for the positive terminal of the voltage source and GND (black wire)
as the negative terminal. You can get up to 6 Volts and 1 Amp. A header is provided for you to connect
the supply to your breadboard (see Figure 2).

Note: Make sure you do not insert your header the wrong way which will short all 4 of its pins. This
will result in high currents! Also be mindful about where you are connecting the voltage supply on your
breadboard.

To use the power supply, log into the lab computers and launch the program from the task bar as shown in
Figure 3. The computer should connect to the PXI and give you a front panel from which to control the
power supply (see Fig 4). We will only be using Channel 0. From here you can adjust Voltage Level, Current
Limits, and enable the supply.

WARNING: Applying higher than rated voltage or reversing polarity of the connection can potentially fry
your board. You will be responsible for sourcing a new one if this happens. Do not enable a power supply
until you are sure you have connected it properly and configured the output correctly.

page 1 – version September 22, 2018

Figure 2: Pin header to connect to plug into breadboard.

Figure 3: Taskbar to launch program to manage the PXI.

Figure 4: NI Front Panel

page 2 – version September 22, 2018

1 Prelab

For the prelab, you will need to run code on the ESP32 and a host computer (lab computer or your laptop).

1 Make sure you have completed Lab 3.

2 Read and understand the entire lab guide.

3 Study the guide above for the NI PXI-4410 Power Supplies.

4 Create an account on https://thingspeak.com and follow the instructions to set up a channel with
fields for voltage and current.

5 Write a micropython program to send voltage and current measurements from the INA219 to
thingspeak. Go to the thingspeak website to verify that the data has been correctly received.
Print a screen shot of your data displayed on the thingspeak website.
Use the following values for MQTT:

python mqtt_plot_host.py

broker = "mqtt.thingspeak.com"

topic = "channels/" + TS_CHANNEL_ID + "/publish/" + TS_WRITE_KEY

TS CHANNEL ID and TS WRITE KEY are values you obtain from thingspeak when setting up the channel.
Format the message as follows:

message = "field1={}&field2={}".format(v, i)

where v and i are the values of the measured voltage and current.

Get started early on the prelab to have sufficient time for resolving potential problems. Use
Piazza, office hours, and discussions to get help and your questions answered so that you will
come completely prepared.

Prelab Checkoff

At the start of the lab session, show the following results from the prelab to the instructor to get credit.
Note: you need to complete all parts of the laboratory to pass the course.

1. Printout of plot of voltage, current, and power versus resistance of the solar cell. Be ready to show
and explain the code used to produce this plot

2. Printout of your data displayed on the thingspeak website

3. Familiarity with lab guide

Checkoff:

page 3 – version September 22, 2018

https://thingspeak.com

2 Lab

Part A: Characterize Solar Cell

If you did not have appropriate lighting to characterize the solar cell in the prelab, rerun this test in the lab
with artificial light.

Checkoff:

Part B: Measure ESP32 Current Draw

To measure the current draw of the ESP32, we need to power the HUZZAH32 board from the laboratory
power supply, rather than the USB port.

Lab supplies can be programmed to set a precise output voltage and also to set the maximum output current.
This feature is extremely useful in experimental setups as it may protect a circuit from damage in the case
of faulty wiring or other errors. It is good practice to always set a current limit only slightly higher than the
current required by the experiment under normal operation. A simple way to check that the current limiting
works as expected is to deliberately set the limit too low and verify that the supply indicates overload.

1 Program one of the outputs of the lab supply to 3.3 V. Verify with the DMM.

2 Set the supply current limit to 50 mA. Verify by shorting the supply output with the DMM set to
measure current. The DMM should show no more than 50 mA current.

3 Set the supply current limit to the expected current drawn by the HUZZAH32 board under normal
operation.

4 Verify that the HUZZAH32 connects to the internet after reset (based on code in boot.py).

5 Disconnect the USB cable from the HUZZAH32 (and the battery, if connected) and power it instead
from the lab supply programmed to 3.3 V. Connect the supply between the VBAT (3.3 V) and GND (0 V)
pins of the HUZZAH32 board with the DMM configured as ammeter in series. Peruse the pin diagram
posted at https://github.com/bboser/IoT49. Record the current drawn.

6 Disconnect the lab supply, and reconnect via USB. Test the following program on the ESP32 (be sure
to be able to explain the operation of the program during the prelab checkoff!):

from time import sleep

from machine import deepsleep, Pin

from board import LED

led = Pin(LED, mode=Pin.OUT)

led(1)

print("awake")

sleep(60)

print("deepsleep")

led(0)

deepsleep(60000)

The LED should be on for approximately 60 seconds, followed by off (during deepsleep) for another 60
seconds.
Once verified, flash the program to the ESP32 as /flash/main.py.

7 Disconnect the USB cable from the HUZZAH32 (and the battery, if connected) and power it instead
from the lab supply programmed to 3.3 V. Connect the supply between the VBAT (3.3 V) and GND (0
V) pins of the HUZZAH32 board with the DMM configured as ammeter in series. Important: Set the
current range to 1 Amp fixed (rather than autoranging) for this test. Otherwise the DMM interrupts

page 4 – version September 22, 2018

https://github.com/bboser/IoT49

the circuit when changing the measurement range, causing the ESP32 to reboot. You should see the
current alternating between normal operation (LED on) and deepsleep (LED off). Record the two
measured currents and demonstrate the setup to the instructor.

8 Disconnect the lab supply and reconnect by USB. Reflash micropython to the ESP32 to remove
/flash/main.py and get back a REPL prompt. Reflash /flash/boot.py.
Suggestion: A better solution is to configure a pin of the HUZZAH32 as input with the pullup en-
abled. Modify /flash/main.py to enter deepsleep only if that pin is high (1). To disable deepsleep,
simply connect a wire between that pin and GND. An alternative would be to terminate the program
after, e.g., 10 runs using a counter value stored in RTC memory (which is retained during deepsleep).

Checkoff:

Part C: Operation from Battery and Solar Power

In this part we will power the ESP32 from the battery and then connect the solar cell for recharging.

1 Write a function /flash/main.py that blinks the LED for one minute and then terminates. Disconnect
the USB cable, and power the HUZZAH32 from the battery. Hard reset the ESP32 and verify that
the LED blinks.

Checkoff:

2 Delete /flash/main.py.

3 Modify your program using this template:

turn on LED

...

measure solar cell voltage and current with the INA219

and send result to thingspeak

...

turn off LED and

enter deepsleep for 10 seconds

(for testing, increase to 5 minutes when code is verified)

...

Verify the program (check the thingspeak website that values are uploaded).
Flash the program to /flash/main.py.

4 Disconnect the USB cable and connect the solar cell between VUSB and GND on the HUZZAH32 board.

5 Make sure the solar cell is well illuminated, then reset the ESP32.

6 If everything works correctly, the microcontroller runs boot.py, connects to the internet, and turns on
the red LED. The yellow LED (battery charging indicator) is off since all the current from the solar cell
is needed to power the ESP32, with any balance (if the solar cell does not generate sufficient power)
coming from the battery. Now main.py runs, takes a measurement with the INA219 and sends the
result to thingspeak. The red LED turns off, and your program executes deepsleep, the ESP32 turns
off. Since now the solar cell generates more power than is needed, it charges the battery, evidenced by
the yellow LED which now turns on. After the deepsleep period expires, the process repeats.

Check the recorded voltage and current values on the thingspeak website.

Checkoff:

page 5 – version September 22, 2018

	Prelab
	Lab

