
EE49 Fall 2018

Lab 5 GPIO, Interrupts, Concurrency (Part 1)

Name SID Checkoff

Objectives: Design an IoT app that combines analog and digital GPIO, interrupts and timers. Learn how
to use an oscilloscope.

The application combines the following elements:

1. Buzzer playing tune

2. LED with PWM (pulse width modulation) dimming

3. Two-axis joystick and pushbutton serving the following functions (Part 2: next week’s lab):

• Pushbutton toggles between playing tune and synthesizer function

• Left-right controls the frequency of the synthesizer

• Up-down controls the duty cycle of the synthesizer

The key to getting all this working is to construct and test each part individually, and then gradually
assemble the parts. This lab demonstrates many capabilities and may serve as a starting point for more
sophisticated applications. After completing the lab, you are encouraged to improve the setup (ex: adjust
the range of the joystick control for better sensitivity) and try other ideas. Or hook up a speaker for higher
quality sound.

Parts and Tools

HUZZAH32 board, joystick, resistors (available in the lab), buzzer, LED, solderless prototyping board.

page 1 – version September 30, 2018

1 Prelab

Since different sections depend on reach other, read the entire document before starting work.

Get started early on the prelab to have sufficient time for resolving potential problems. Use Piazza, office
hours, and discussions to get help and your questions answered so that you will come completely prepared.

A. LED Brightness

The goal is to gradually modulate the intensity of an LED from off to fully on over a period of 5 seconds.
When the LED reaches full brightness, turn it off and start over. Use the built-in LED of the HUZZAH32
for the prelab and switch to an external (and brighter) LED in the lab with a resistor in series (to limit
the current and avoiding frying the ESP32). A typical red led drops approx. 2V and draws about 15mA .
Calculate the series resistor needed to achieve this with the 3.3V supply on the microcontroller board. Draw
the circuit diagram for the LED connection in the space below:

Note: LEDs are polarized. Current enters the terminal with the slightly longer lead and exits the shorter
lead.

1. Configure the Pin to which the LED is connected as an open-drain output. Verify that you can turn
the LED on and off.

2. Initialize PWM timer 0 for the led Pin with 500 Hz and 50 % duty cycle. Vary the duty cycle and
verify that you can control the intensity between fully on and off.

3. Now configure timer 0 to call a function (e.g. led cb) at a regular interval (determine the correct
period to get a 5 second cycle). Each time led cb is called, increase the PWM duty cycle for the LED
by 1 (reset when 100 is reached). Suggestion: use a global variable brightness to keep track of the
LED state.

Note 1: import PWM from machine.

Note 2: After setting up the timer, the program continues. If there is no more code to execute,
microphython returns control to the repl. led cb continues to be called at the period you specified. If
you are executing the program with run (shell49), issue the repl command to see output from print
statements you may be using for debugging.

Note 3: Reset the ESP32 to stop the timer. This also frees up PWM channels—if you get a message
that there are no more channels, reset the board before running the program.

Note 4: Note that the ESP32 uses several kinds of timers: several timers to set the frequency of PWM
outputs, several timers for executing code at periodic intervals, and the deepsleep timer. Probably a
few other ones as well. For clarity they are all called timer!

Now you have configured the LED with PWM do to its “light show” without processor intervention: the
ESP32 is available to do other things, e.g. play a tune.

page 2 – version September 30, 2018

Important: Use a timer, not a loop to control the LED brightness. Although a loop will work when the
LED is the only part to be controller, the objective of the lab is to do several things simultaneously. If you
use a loop in this part, you will have to rewrite your code later with a timer (replacing the loop) to complete
the lab!

B. Oscilloscope

Write a program that configures two different PWM timers for 5 kHz and 8 kHz respectively, with 20 % and
60 % duty cycle. Have it ready in the lab so you can measure the signals with an Oscilloscope.

Familiarize yourself with the function and operation of oscilloscopes following the tutorial at

https://learn.sparkfun.com/tutorials/how-to-use-an-oscilloscope

(search the web for many other resources including videos). Make sure you understand the function of the
trigger.

In the 122 Hesse Lab we will use the available NI PXI-5114 Oscilloscope which provides a digital oscilloscope
interface on the lab computer desktops. Grab a coaxial probe to connect to the PXI-5114 (fig. 1 (left))
and open the oscilloscope front panel by clicking on the indicated icon (fig. 2). The front panel provides
many of the same functions as a benchtop oscilloscope (fig. 1 (right)). As with any new tool (oscilloscopes
especially), some exploration with the interface is required to find the functions you need.

Figure 1: Left: NI PXI-5114 with coaxial probe. Right: PXI Oscilloscope Front Panel Interface

Figure 2: Oscilloscope on Windows Taskbar

Prelab Checkoff

Task Checkoff

LED brightness demo and program

Oscilloscope code

page 3 – version September 30, 2018

https://learn.sparkfun.com/tutorials/how-to-use-an-oscilloscope

2 Lab

A. Oscilloscope

Start up the oscilloscope, connect a probe to channel 1, enable the channel and set it to high sensitivity. Do
not connect anything to the probe. Without touching anything, try to pick up the 60 Hz from the power
lines.

This is an example of interference and of course affects not only oscilloscope probes, but all electronic circuits.
Building circuits that are robust to such interference (i.e. their operation unaffected by it) is a quality of a
good engineer!

Run the program from the prelab that sets up two PWM outputs to check out the oscilloscope. Connect an
oscilloscope probe to one of the PWM outputs. Adjust the trigger such that the waveform is stable (i.e. does
not run across the display). Set appropriate scaling to read the frequency and duty cycle off the display.
Vary the duty cycle and verify that the oscilloscope output changes accordingly.

Now connect the second probe to display both PWM waveforms simultaneously. Choose to trigger on the
first, then the second channel. Can you get both images to be stable, i.e. not run across the screen? Why
not?

Checkoff:

B. Playing a Tune

We configure a PWM channel to output the frequencies corresponding to a tune we want to play. A sample
tune is offered at the end of this document. Search the internet for alternatives, or compose your own.

Configure an output as open-drain. Remember that the microcontroller ties open-drain outputs to GND
when set to logic 0, and open (i.e. not connected to GND or VDD) when set to 1. Connect the buzzer in
a circuit from 3.3 V to a resistor (approx. 150 Ω), to the microcontroller output. In the space below, draw
the schematic showing the ESP32 pin, resistor, buzzer, and all other relevant terminals and connections.
Remember that the buzzer is polarized.

1. Configure a PWM timer to control the pin the buzzer is connected to. Verify that you can control the
buzzer frequency with PWM. Use a different PWM timer than for the LED (e.g. 1).

2. Use a for-loop to play a tune. Don’t forget a sleep statement in the loop, or the tune will be very short!

3. Analogous to the LED, set up timer 1 to change the frequency of the buzzer output to the next note in
your tune. Start over after reaching the end of the tune. Again, use a timer, not a loop to implement
this part!

Run the LED and buzzer timers simultaneously. In more interesting applications, you may be controlling a
robot, play safety warning sounds, and send measurement results to the cloud, all at the same time!

Checkoff:

page 4 – version September 30, 2018

Sample Tune

define frequency for each tone

C3 = 131

CS3 = 139

D3 = 147

DS3 = 156

E3 = 165

F3 = 175

FS3 = 185

G3 = 196

GS3 = 208

A3 = 220

AS3 = 233

B3 = 247

C4 = 262

CS4 = 277

D4 = 294

DS4 = 311

E4 = 330

F4 = 349

FS4 = 370

G4 = 392

GS4 = 415

A4 = 440

AS4 = 466

B4 = 494

C5 = 523

CS5 = 554

D5 = 587

DS5 = 622

E5 = 659

F5 = 698

FS5 = 740

G5 = 784

GS5 = 831

A5_ = 880

AS5 = 932

B5 = 988

C6 = 1047

CS6 = 1109

D6 = 1175

DS6 = 1245

E6 = 1319

F6 = 1397

FS6 = 1480

G6 = 1568

GS6 = 1661

A6 = 1760

AS6 = 1865

B6 = 1976

C7 = 2093

CS7 = 2217

D7 = 2349

page 5 – version September 30, 2018

DS7 = 2489

E7 = 2637

F7 = 2794

FS7 = 2960

G7 = 3136

GS7 = 3322

A7 = 3520

AS7 = 3729

B7 = 3951

C8 = 4186

CS8 = 4435

D8 = 4699

DS8 = 4978

Bach Prelude in C.

bach = [

C4, E4, G4, C5, E5, G4, C5, E5, C4, E4, G4, C5, E5, G4, C5, E5,

C4, D4, G4, D5, F5, G4, D5, F5, C4, D4, G4, D5, F5, G4, D5, F5,

B3, D4, G4, D5, F5, G4, D5, F5, B3, D4, G4, D5, F5, G4, D5, F5,

C4, E4, G4, C5, E5, G4, C5, E5, C4, E4, G4, C5, E5, G4, C5, E5,

C4, E4, A4, E5, A5_, A4, E5, A4, C4, E4, A4, E5, A5_, A4, E5, A4,

C4, D4, FS4, A4, D5, FS4, A4, D5, C4, D4, FS4, A4, D5, FS4, A4, D5,

B3, D4, G4, D5, G5, G4, D5, G5, B3, D4, G4, D5, G5, G4, D5, G5,

B3, C4, E4, G4, C5, E4, G4, C5, B3, C4, E4, G4, C5, E4, G4, C5,

B3, C4, E4, G4, C5, E4, G4, C5, B3, C4, E4, G4, C5, E4, G4, C5,

A3, C4, E4, G4, C5, E4, G4, C5, A3, C4, E4, G4, C5, E4, G4, C5,

D3, A3, D4, FS4, C5, D4, FS4, C5, D3, A3, D4, FS4, C5, D4, FS4, C5,

G3, B3, D4, G4, B4, D4, G4, B4, G3, B3, D4, G4, B4, D4, G4, B4

]

page 6 – version September 30, 2018

	Prelab
	Lab

