PRINT NAME (Last, First):

SIGN YOUR NAME:

\qquad

STUDENT ID \#:

$\# 1$	$\# 2$	$\# 3$	$\# 4$	5	6	TOTAL
25	10	10	10	10	10	

Intructions:

1 You have 90 minutes to complete this exam.
2 Print and sign your name, enter your student ID number.
3 Read the questions carefully.
4 Write your solution clearly.
5 You must supply units for all your answers (i.e. $\mathrm{k} \Omega, \mu \mathrm{A}$)
6 This exam has 6 questions worth 75 points, so you should proceed at around 1 point per minute.

Problem \# 1 (25 points)
(a) Simplify the following Boolean expression:

$$
Q=A B+\bar{B}+\overline{(A+C)} B+\bar{A} B C
$$

$\mathrm{Q}=$	4 points

(b) What do these acronyms stand for?

CMOS:	1 point
FET:	1 point
PSK:	1 point

(c) What is the principal advantage of CMOS logic circuits?
Answer: 1 point
(d) Draw a comparator and explain what it does.

Answer:	2 points

(e) You want to build a digital thermometer capable of measuring temperatures in the range from 0° to 212°. Your digital thermometer can have a quantization error of $\pm 0.001^{\circ}$. How many binary lines are needed in the output data bus of the digital thermometer?
Answer: 2 points
(f) List any two uses for coding in communication systems.

	2 points
1	
2	

(g) Consider the following code.

We transmit the five bits 00000 for the digital $\mathbf{0}$ and the five bits 11111 for $\mathbf{1}$.
How many bit errors can this code correct? 1 point

How many bit errors can this code detect? 1 point	

(h) What dopant material is typically used to make a p-type semiconductor?
Answer: 1 point
(i) What dopant material is typically used to make an n -type semiconductor?
Answer: 1 point
(j) Is coding used for communication of analog signals?
Answer: 1 point
(k) Do diodes require an external power supply?

Answer:	1 point

(1) What is the purpose of a commutator in a brushless DC motor?

Answer:	2 point

(m) What is the purpose of a quadrature encoder for motor?
Answer: 2 point

Problem \# 2 (10 points)
Consider the counter circuit shown below. There are three D-type flip flops, and the state of the counter is labeled ABC. Design the combinatorial circuit labeled ckt that will realize the state transition diagram shown below.

Draw your circuit here:

Problem \# 3 (10 points)

Tiffany and Riley are playing Jeopardy on national TV. They each have a little button that they can press which generates the signals A and B. When they press their button, a signal changes from 0 to 1 . For example, in the figure shown below Tiffany hits her button at time t_{A} while Riley hits his button at the later time t_{B}.
You can assume that they never push their buttons at exactly the same time.
Design a circuit to detect who hit their button first. The circuit should have two outputs:
$P=\left\{\begin{array}{ll}1 & \text { if Tiffany pressed her button first } \\ 0 & \text { if no one has pressed a button yet }\end{array} \quad Q= \begin{cases}1 & \text { if Riley pressed his button first } \\ 0 & \text { if no one has pressed a button yet }\end{cases}\right.$

Draw your circuit here:

Problem \# 4 (10 points)

In this problem, you are asked to design a digital circuit. There is parallel binary data arriving at an seven line bus A6, A5, A4, A3, A2, A1, A0. The data on the bus represents a number x between 0_{10} and 127_{10}. The least significant bit is $A 0$ and the most significant bit is $A 6$.

You have to build a digital circuit whose output is \mathbf{F}. The output \mathbf{F} should be $\mathbf{1}$ if and only if the number x represented on the bus is exactly divisible by 4 . For example, if the current data is 1100, the number represented is 76 which is divisible by 4 and so $\mathbf{F}=\mathbf{1}$. Otherwise $\mathbf{F}=\mathbf{0}$.

Draw your circuit here:

Problem \# 5 (10 points)
You have three binary signals A, B, and C.

Design a CMOS gate to realize the logical expression

$$
F=A \cdot B+C
$$

Your can use the 6 FET switches shown below.
You also have access to logical $\mathbf{0}$ and logical $\mathbf{1}$ signals.

There will be no partial credit for this problem.

Answer:

Problem \# $6(3+3+4=10$ points $)$
A filter with input voltage $v_{i}(t)$ and output voltage $v_{o}(t)$ has voltage gain $\mathbb{G}(\omega)$. In other words,

$$
\mathbb{V}_{o}(\omega)=\mathbb{G}(\omega) \mathbb{V}_{i}
$$

where \mathbb{V}_{i} and \mathbb{V}_{o} are the phasors of $v_{i}(t)$ and $v_{o}(t)$ respectively.

The magnitude and phase of $\mathbb{G}(\omega)$ are plotted above. In each of the following cases, compute the voltage output $v_{o}(t)$:
(a) $v_{i}(t)=\cos (4 t)$

$$
v_{o}(t)=
$$

(b) $v_{i}(t)=\cos (4 t)+\cos (6 t)$

$$
v_{o}(t)=
$$

(c) $\left.v_{i}(t)=1+\sin (4 t-\pi / 2)\right)$
\square

