
PRINT NAME (Last, First):

SIGN YOUR NAME:

STUDENT ID #:

ſ	# 1	# 2	# 3	# 4	5	6	TOTAL
	95	10	10	10	10	10	77
	25	10	10	10	10	10	75

Intructions:

- 1 You have 90 minutes to complete this exam.
- 2 Print and sign your name, enter your student ID number.
- 3 Read the questions carefully.
- 4 Write your solution clearly.
- 5 You must supply units for all your answers (i.e. $k\Omega, \mu A$)
- 6 This exam has 6 questions worth 75 points, so you should proceed at around 1 point per minute.

Problem # 1 (25 points)

(a) Simplify the following Boolean expression:

$$Q = AB + \overline{B} + \overline{(A+C)}B + \overline{A}BC$$

Q = 4 points

(b) What do these acronyms stand for? CMOS: 1 point FET: 1 point

1 point
1 point

- (c) What is the principal advantage of CMOS logic circuits? Answer:
- (d) Draw a comparator and explain what it does.

Answer:

2 points

1 point

(e) You want to build a digital thermometer capable of measuring temperatures in the range from 0° to 212°. Your digital thermometer can have a quantization error of $\pm 0.001^{\circ}$. How many binary lines are needed in the output data bus of the digital thermometer?

Answer:

2 points

(f) List any two uses for coding in communication systems.

			2 points
1			
2			

(g) Consider the following code.

How many bit errors can this code correct? 1 point How many bit errors can this code detect? 1 point

(h) What dopant material is typically used to make a p-type semiconductor? Answer: 1 point

We transmit the five bits 00000 for the digital $\mathbf{0}$ and the five bits 11111 for $\mathbf{1}$.

- (i) What dopant material is typically used to make an n-type semiconductor? Answer: 1 point
- (j) Is coding used for communication of analog signals? Answer: 1 point
- (k) Do diodes require an external power supply? Answer: 1 point
- (l) What is the purpose of a commutator in a brushless DC motor? Answer: 2 point
- (m) What is the purpose of a quadrature encoder for motor?

Answer:

2 point

Problem # 2 (10 points)

Consider the counter circuit shown below. There are three D-type flip flops, and the state of the counter is labeled **ABC**. Design the combinatorial circuit labeled **ckt** that will realize the state transition diagram shown below.

Problem # 3 (10 points)

Draw your circuit here:

Tiffany and Riley are playing Jeopardy on national TV. They each have a little button that they can press which generates the signals A and B. When they press their button, a signal changes from 0 to 1. For example, in the figure shown below Tiffany hits her button at time t_A while Riley hits his button at the later time t_B .

You can assume that they never push their buttons at exactly the same time.

Design a circuit to detect who hit their button first. The circuit should have two outputs:

Problem # 4 (10 points)

In this problem, you are asked to design a digital circuit. There is parallel binary data arriving at an seven line bus A6, A5, A4, A3, A2, A1, A0. The data on the bus represents a number x between 0_{10} and 127_{10} . The least significant bit is A0 and the most significant bit is A6.

You have to build a digital circuit whose output is **F**. The output **F** should be **1** if and only if the number x represented on the bus is exactly divisible by 4. For example, if the current data is **1100**, the number represented is 76 which is divisible by 4 and so $\mathbf{F} = \mathbf{1}$. Otherwise $\mathbf{F} = \mathbf{0}$.

Problem # 5 (10 points)

You have three binary signals A, B, and C.

Design a CMOS gate to realize the logical expression

 $F = A \cdot B + C$

Your can use the 6 FET switches shown below. You also have access to logical **0** and logical **1** signals.

There will be no partial credit for this problem.

nswer:

Problem # 6 (3+3+4 = 10 points)

A filter with input voltage $v_i(t)$ and output voltage $v_o(t)$ has voltage gain $\mathbb{G}(\omega)$. In other words,

$$\mathbb{V}_o(\omega) = \mathbb{G}(\omega)\mathbb{V}_i$$

where \mathbb{V}_i and \mathbb{V}_o are the phasors of $v_i(t)$ and $v_o(t)$ respectively.

The magnitude and phase of $\mathbb{G}(\omega)$ are plotted above. In each of the following cases, compute the voltage output $v_o(t)$:

(a)) $v_i(t)$) = 0	$\cos(4t)$
(a) $U_{i}(\iota)$) — '	$\cos(4i)$

$v_o(t) =$		

(b) $v_i(t) = \cos(4t) + \cos(6t)$

$v_o(t) =$		

(c)
$$v_i(t) = 1 + \sin(4t - \pi/2))$$

 $v_o(t) =$