
Cloud-based Weather Sensor Lab

EE 49

December 4, 2018

1 Overview

Microcontrollers such as the Huzzah ESP32 are great for building an IoT
device that collects sensor readings. However, they have limitations in terms
of storage and processing capabilities. A cloud-based service such as AWS
provides unlimited storage capabilities and computation power for IoT de-
vices and systems. In this lab, you will be setting up AWS in order to publish
your sensor readings, store them in a database, and display them on the web.

2 Prelab: AWS Setup

For this lab, we will be using Amazon Web Services (AWS) as our cloud
service. If you have never heard of AWS before, don’t worry, we’ll walk you
through how to set up an account in this section.

2.1 Creating an account

Register for an account at https://portal.aws.amazon.com/billing/signup.
This step will require you provide credit card information. You will NOT be
charged on this card following the instructions of the lab, and you can shut
down your account imediatly at its conclusion. If this step poses an issue for
you, please reach out to the course staff.

2.2 Region Select

At the top right corner of your screen, you should see a region selector. Set
your region to US East (Ohio). If you’re curious about what these regions

1

https://aws.amazon.com/
https://portal.aws.amazon.com/billing/signup#/start


are for, feel free to read the Region and Availability Zone documentation.

2.3 EC2

Now click on the service selector in the top left of your screen and click
on EC2 under the compute section. EC2, or Elastic Compute Cloud, is a
service that lets us create a linux machine running in the cloud. Later in the
lab, this cloud will become the host of our node-red server. To set up your
EC2 instance, follow the below steps:

1. From the main EC2 page, click on the large blue Launch Instance
button. You will be redirected to the creation portal.

2. Scroll down until you see Ubuntu Server 18.04 LTS (HVM), SSD
Volume Type. insure that the 64-bit box is selected and then click
on the blue Select button to the right.

3. On the next screen, select the t2.micro instance type.

4. Switch over to the the Configure Security Group tab. Click Add Rule,
and set the port to 1880.

5. On the final Review step, click the Launch button

6. The console will prompt you to configure a set of SSH keys. Select
Create a new key pair and click Download key pair. Your browser
will save the .pem file - keep that safe. If you lose this file you will have
to create an entire new EC2 instance.

7. Finally, click Launch.

2.4 Dynamo DB Setup

Returning to the service selector, click on Dynamo DB under the data base
section. Dynamo DB is the database system we will use to store the readings
taken by our sensor. In order to do this, we will have to create a new table:

1. Click on the blue Create Table button.

2. Set the table name to weather station data and the primary key to
hybrid key.

3. Click the Create Button

2

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html


2.5 Check Off

Be prepared to show your GSI your created EC2 instance, the saved keys for
that EC2 instance, and the Dynamo DB table you have created when you
come into class.

3 Communicating With the Cloud

Now we will set up AWS IoT Core to publish sensor readings from the mi-
crocontroller. AWS IoT Core is a platform that will allow us to connect our
device to AWS Services so that we can store and process our data later on.
Using the service selector, select IoT Core under the Internet of Things
section. This is your IoT Core portal, where we will be setting up our device
and receive sensor readings. Feel free to look around and explore the portal.

3.1 Setting Up Your Thing

To be able to receive messages on AWS IoT, we need to register our ”Thing”.
A ”Thing” is the representation of our device on the cloud. To begin, go on
the AWS IoT Core portal. In the left navigation pane, chose Manage, and
then choose Things and follow these steps:

1. On the Things page, choose Register a thing. On the next page,
choose Create a single thing.

2. On the Add your device to the thing registry page, enter Sta-
tion1 for the device name. Leave the default values for all the other
fields, and then choose Next.

3. On the Add a certificate for your thing page, choose Create cer-
tificate. This generates an X.509 certificate and key pair, which you
will need later on to be able connect your device to AWS IoT and
publish messages.

4. On the Certificate created! page, download your public and private
keys and your certificate. Save them in a directory on your computer.
Choose Activate to activate the X.509 certificate, and then choose
Attach a policy.

3



5. On the Add a policy for your thing page, choose Register Thing.
After you register your thing, you will need to create and attach a new
policy to the certificate.

6. Congrats! We have successfully registered our thing! You should be
able to see your device on the Things page. Now we will attach a
policy to it. In the left navigation pane, choose Secure, Policies.
Then choose Create a policy.

7. On the Create a policy page, enter a Name for the policy. For
Action, enter iot:*. For Resource ARN, enter *. Under Effect, choose
Allow, and then choose Create. You should be able to see your newly
created policy on the Policies page. This policy allows your device to
publish messages to AWS IoT.

8. Now we will attach this policy to our device’s certificate. In the AWS
IoT console, choose Manage, Things. On the Things page, choose
Station1. In the navigation pane, choose Security and click on the
certificate we created earlier.

9. On the certificate’s Details page, in Actions, choose Attach policy.
Choose the policy we created earlier, and then choose Attach.

That’s it! We have successfully registered our Thing and created certifi-
cates to be able to connect and publish messages.

3.2 Setting Up Config.py

Now we will set up our Config.py file to store device configurations and
certificates. To begin, open the Config.py file in your starter code. You will
see some variables initialized to empty strings.

1. Our device will need to be able to connect to a network to publish sen-
sor data to AWS IoT. In Config.py, set the variables netname and
netwpd to your strings containing your Wifi Network Name and Pass-
word. (You can create a hotspot from your phone. Note: CalVisitor
and AirBears will not work.)

2. Next, we will set client id to the Thing ARN that AWS IoT provides,
which is a unique string that identifies your device. To find your Thing

4



ARN, go to the your AWS IoT console and choose Manage, Things on
the navigation pane. Choose your Thing that we created earlier, and
you will see the Thing ARN, which will be in the format:

arn : aws : iot : us− east− 2 : XXXXXXXX : thing/Station1

Set client id to this string.

3. Now we will get the Rest API Endpoint for our device to connect to.
Go to your Thing page on the AWS IoT console once again. On the
left navigation pane, choose Interact and look for the HTTPS section,
near the top. Your end point will look like:

ABCDEFG1234567.iot.us− east− 2.amazonaws.com

Set the server variable in Config.py to this string.

4. Lastly, we will copy our Thing certificates that we created earlier to
Config.py. Head over to the directory where you downloaded your
certificates. Copy the contents of the private.pem.key file to the pri-
vate key variable, and the certificate.pem.crt file to the cert variable.
Make sure to store them in multi-line string (triple quotes) and copy
everything including ”—–BEGIN RSA PRIVATE KEY—–” and ”—–
END RSA PRIVATE KEY—–”.

3.3 Publishing MQTT Messages

Now that we have everything set up, we can publish messages to AWS IoT
from our device! Open WeatherUtils.py in your starter code. In the class
constructer, you need to create an instance of MQTTClient and store it in
self.client. You will need to provide it with the arguments client id, server,
keepalive, port, ssl, and ssl params.
Hint: some of the arguments have been provided for you, and the rest are in
Config.py. To fetch them, you might find python’s getattr() function helpful.
After you create an instance of MQTT Client, call the connect() function on
self.client.

To test your code, connect your microcontroller to your computer using a
USB cable and load the starter files on to the microcontroller using Ampy.

5



(Instructions for Ampy installation and usage: https://github.com/adafruit/ampy)
Run Shell49 on your terminal and get a Repl Prompt from MicroPython.

Once you have a Repl prompt from MicroPython, reset the board. In the
repl prompt, run:

from weather utils import WeatherUtils
weatherUtils.publish(”myTopic”,”Hello World!”)

To see the message on AWS IoT, go to your AWS IoT Console. On
the left navigation pane, choose Test. Under Subscribe, type myTopic in
the Subscription topic box and click Subscribe to Topic. If you re run
the code above, you should see your message ”Hello World” under the topic
”myTopic”. Feel free to send your own messages by changing Hello World to
any string and running the weatherUtils.publish method.

3.4 Publishing Sensor Data

It’s time to sample sensor readings and publish them on to AWS IoT! We
have done most of the work for this part. Open up Main.py and try to
understand what it does. For this part, you have to implement the functions
get json and publish data in WeatherUtils.
When publishing our sensor data, we want to convert our data to a JSON Ob-
ject. In the get json function, create a dictionary with the keys ”station id”,
”value”, and ”data type” and assign them to their appropriate values. Then
return the JSON representation of the Python dictionary. You might find
the method ujson.dumps() useful for this part.
Next, implement publish data to publish the input Data to the topic ”Data”.
Lastly, set the READ ENABLED variable in WeatherUtils.py to True in
order to enable sensor reading and publishing. That’s it! If you load the files
on to your board and reset the device, you will be able to see your sensor
data published on the AWS IoT platform when you subscribe to the topic
”Data”.

3.5 Check off

To get checked off for this part, run your code on the microcontroller by
pressing the reset button and show your GSI the published sensor data on

6

https://github.com/adafruit/ampy


your AWS IoT portal.

4 Displaying our Sensor Reading

While reading out sensor data from the IoT Cloud portal is cool, we want a
clean way to look at the trends in the data we have recieved. To acomplish
this, we will host a node-red server on our EC2 instance that will interact
with our MQTT client to store and display readings!

TODO: more background on node-red, how it is a drag and drop system

4.1 Setting up node-red

We will be running node-red on the EC2 instance we created in the prelab.
First, we must access our instance by sshing into it.

1. Find the certificate (.pem) file that you downloaded when you created
your instance and copy it into the .ssh directory with the following
command:

$ cp path/ to /your/ c e r t . pem ˜/ . ssh / weather\ s t a t i o n \ s e r v e r . pem

2. Next, open your AWS console and use the service selector to open the
EC2 portal.

3. In the left sidebar, click on Instances. You should see a single instance
listed. Note that if no instances are listed, you should check your region
to make sure it is set to Ohio.

4. Expand the Public DNS (IPv4) column and copy the value listed for
your instance. It should appear as XXXX.us-east-2.compute.amazonaws.com
where XXXX is a character combination, such as ec2-18-224-18-187

5. Now return to your terminal and replace address in the following com-
mand with the information you copied in the previous step. Then
execute the result to ssh into your server:

$ ssh − i ” ˜/ . ssh / weather\ s t a t i o n \ s e r v e r . pem” ubuntu@address

Now that we’re in to our instance, it’s time to install node-red and configure
it.

7



1. First, we will install node.js and node-red by executing the following
commands on our instance.

$ c u r l −sL https : // deb . nodesource . com/ setup 4 . x | sudo −E bash −
$ sudo apt−get i n s t a l l −y node j s bui ld−e s s e n t i a l
$ sudo npm i n s t a l l −g node−red

2. Then we will install node-red-dashboard, a tool that will help us create
charts for that data that we collect.

$ cd ˜/ . node−red
$ npm i node−red−dashboard

3. To insure that your instance runs as expected, open the staff copy of
settings.js and copy its contents into the settings.js file located inside
of the ./node-red directory

The final step in setting up our node-red server is to make sure it can
communicate with our other AWS services.

1. We will create a folder to store AWS certificates in the root directory.
Similar to the certificates on our weather station, these certificates allow
us to send and receive messages from the AWS IoT cloud

$ mkdir −p ˜/ . aws/ c e r t s
$ cd ˜/ . aws/ c e r t s

2. Copy the 4 certificates you used for the IoT core onto your device: The
Amazon root certificate, the IoT certificate, the public key, and the
private key. The names of these files are not critical, but name them
such that you know which is which later on.

3. In your browser, open up the AWS control panel and use the service
selector to open up IAM.

4. In the navigation pane of the console, choose Users.

5. Choose your IAM user name (not the check box). This will be your
email

6. Choose the Security credentials tab and then choose Create access key.

8



7. To see the new access key, choose Show. Your credentials will look
something like this:
Access key ID: AKIAIOSFODNN7EXAMPLE
Secret access key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Make sure to write these keys down.

8. Copy the credentials file from the staff files into your /̃.aws directory
and replace the missing information with the keys you just generated.

With all this done, you have successfully set up your node-red server to
communicate with the cloud! Now we can move on to making a simple data
display.

4.2 Creating A Data Page

We’ll now create flow on our node-red server that aggregates our data into
the table we created and then displays that data out to the world.

1. Open the staff flow.json file and look at its contents, this file describes
all the blocks and wires in our node-red flow. You’ll see that some
sections are left incomplete, fill in those sections with the appropriate
identifiers and paths.

2. Now on your instance, execute the node-red command. This will launch
your server.

$ node−red

3. Remembering the IP you sshed into your instance with, use a browser
to navigate to XXXX.us-east-2.compute.amazonaws.com:1880. You
should be greeted with a login screen for your node-red configuration
portal. Use the below credentials to log in.
username: admin
password: weatherstation

4. You should now see the flows page of your node-red server. In this
page, you can drag and drop blocks to add elements to your server,
linking the data flow between them by drawing wires block to block.
In order to save you time (and a lot of tedious data parsing code) we
have supplied you with the entire flow to create the display portal.

9



Simply click on the menu icon in the top left corner of your portal,
then click on import and from there select clipboard.

5. In the box that pops up, copy in the flow.json file you modified and set
the import destination to new flow. Click on import and you should
see a flow pop up! Look around this flow and try to see if you can trace
the flow of data though the system.

6. With the flow imported, click on the Deploy button in the top left.

With the flow deployed, our portal is now up and running! Navigate to
XXXX.us-east-2.compute.amazonaws.com:1880/data to see it in action.

4.3 Check off

To checkoff this step, please show your GSI your final weather station portal,
and demonstrate that the readings displayed on your portal match those
taken in by your weather station. Then, explain how data flows through the
node-red server by describing the path of a message sent from your weather
station until it is eventually displayed. Once you have done this, you are
done with the lab!

5 Post Lab: Clean Up

To make sure that you are not charged for your AWS account, you will have
to delete all your running instance and databases, this will prevent you from
incurring any compute time in the future. For information on how to do this,
click on the following links.
Deleting EC2
Deleting DynamoDB

10

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SampleData.DeleteTables.html

	Overview
	Prelab: AWS Setup
	Creating an account
	Region Select
	EC2
	Dynamo DB Setup
	Check Off

	Communicating With the Cloud
	Setting Up Your Thing
	Setting Up Config.py
	Publishing MQTT Messages
	Publishing Sensor Data
	Check off

	Displaying our Sensor Reading
	Setting up node-red
	Creating A Data Page
	Check off

	Post Lab: Clean Up

