Reference: W:\Lib\MathCAD\Default\defaults.mcd

Boolean algebra

Signal processing with electronic circuits:

A) Directly, using Kirchhoff’s laws and IV characteristics
 - e.g. addition, subtraction, gain, integration, log, solve differential equations, ...
 - direct interface to sensor
 - relatively simple circuits
 - fast, low power (but only for relatively low "accuracy")
 - very problem specific (limited configurability with potentiometers, switches, ...)
 - limited accuracy (typically <16 Bits, see later)
 - no good memory

B) Digital computation
 - wires carry few limited (usually 2) values
 - highly configurable (often programmable)
 - arbitrary accuracy, immune to "noise"
 - good memory
 - maps to very efficient electronic circuit implementations
 - cannot deal with analog sensor outputs
 - slow / high power for demanding applications
 (moving targets, e.g. digital video now possible, was not 10+ years ago)

C) Invent your own
 - objectives
 - solve interesting problems
 - efficient implementation
 - e.g.
 - molecular computer
 - quantum computer

Digital computation - Boolean algebra

Digital computers can add, subtract, multiply ... but not directly. They realize these functions from simpler elements that perform boolean functions.

Why? These boolean functions map to efficient electronic circuits.

Boolean variables:

only 2 levels, usually called 0 and 1

Physical implementations: e.g.
- smoke signal; semaphore (old train signals)
- VDD / VSS for 1 and 0 <- most current digital computers use this scheme
- positive / negative current (industrial control)
- light / dark (fiberoptics)
- ...

A signal allowing only 2 choices (e.g. 0/1) carries **1 Bit of information.**

Example:
- 1-Bit memory stores 1 in 2 possibilities
- 8-Bit memory stores 1 in $2^8 = 256$ choices, e.g. 0 ... 255 or 256 colors, ...
Binary numbers:

<table>
<thead>
<tr>
<th>Binary</th>
<th>1011</th>
<th>is decimal</th>
<th>(1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>13</td>
<td>convert to binary:</td>
<td>(\text{mod}(13, 2) = 1 \quad \text{trunc}\left(\frac{13}{2}\right) = 6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{mod}(6, 2) = 0 \quad \text{trunc}\left(\frac{6}{2}\right) = 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{mod}(3, 2) = 1 \quad \text{trunc}\left(\frac{3}{2}\right) = 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{mod}(1, 2) = 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is binary</td>
<td>1101 (read mod from bottom)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>check:</td>
<td>(1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13)</td>
</tr>
</tbody>
</table>

Boolean operations:

a) logic NOT (inversion): \(y = \overline{x}\)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

b) logic OR \(z = x + b\)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

boolean algebra!

c) logic AND \(z = x \cdot y\)
combinations, symbols (bubble is inversion):

AND

\[
\begin{array}{c|cc}
 y & 0 & 1 \\
 \hline
 x & 0 & 0 \\
 & 1 & 1
\end{array}
\]

OR

\[
\begin{array}{c|cc}
 y & 0 & 1 \\
 \hline
 x & 0 & 1 \\
 & 1 & 1
\end{array}
\]

XOR

\[
\begin{array}{c|cc}
 y & 0 & 1 \\
 \hline
 x & 0 & 1 \\
 & 1 & 0
\end{array}
\]

Figure 1. Truth tables

Figure 2. Logic gates

Figure 3. De Morgan equivalents

Figure 4. Venn diagrams

Example: arithmetic (addition) with boolean algebra

binary 1-bit adder slice ... chain \(N\) for \(N\)-bit adder

<table>
<thead>
<tr>
<th>inputs</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
S = \overline{A} \cdot \overline{B} \cdot C_{in} + \overline{A} \cdot B \cdot \overline{C_{in}} + A \cdot \overline{B} \cdot \overline{C_{in}} + A \cdot B \cdot C_{in}
\]

\(C_{out} = \ldots\)

circuit diagram ... simplify? (use computer)