Enabling Capacitive Touch Sensing with MSP430

Zack Albus
MSP430 Applications Engineer
Texas Instruments
Agenda

• Overview of Touch Sensing Applications
• System-Level Careabouts
• MSP430 Implementations
• Keys, Sliders & Demos
• Summary
Applications of Touch Sensing

• Alternative to mechanical switches
 ▪ Low cost
 ▪ Longer life

• Flexible user interface
 ▪ Simple buttons
 ▪ Multi-position sliders

• Adaptable

• Useful in...
 ▪ Consumer electronics
 ▪ Appliances
 ▪ Residential control

• ... and almost anywhere a switch is currently used
Touch Sensing Overview

- **Different technologies**
 - Optical, Resistive, Capacitive, Strain,…

- **All detect change in system**

- **Optical**
 - Expensive
 - Complex system design

- **Resistive**
 - Require sensor material that changes R when touched
 - Relatively low cost, but is an additional element to the BOM

- **Capacitive**
 - Can be implemented on PCB directly
 - Flexible sensor size & shape
 - Cost is a function of the PCB and any externals needed
Capacitive Methods

• **Charge transfer technology**
 - Quantum Research Group patented solution
 - Fixed function ICs that measure charge transfer from one sensor C to another
 - Stimulus signal and measurement integrator

• **Capacitive measurement via ADC**
 - Stimulus signal impacts capacitive sensor element, resulting voltage is measured by ADC
 - ADI implementation using a 16-bit Sigma-Delta to perform C-to-Digital conversion

• **Relaxation Oscillator**
 - Creates oscillator dependent on sensor C variation & measures frequency

• **RC Charge/Discharge**
 - Using high frequency clock, times charge and/or discharge times for sensor element with varying C
MSP430 Capacitance Measurement

• Change in capacitance due to physical proximity of a finger or other conductive object

• Method 1:
 ▪ Create oscillator dependent on capacitance of the sensing element
 ▪ Measure freq change when sensor C is changed by touch

• Method 2:
 ▪ Measure R-C charge/discharge where R is constant and the sensor element capacitance changes due to touch
Agenda

• Overview of Touch Sensing Applications
• System-Level Careabouts
• MSP430 Implementations
• Keys, Sliders & Demos
• Summary
Capacitive Fundamentals

- Base capacitance created by PCB mechanics
- Capacitance change due to changing parasitics
 - Finger touch proximity (or conductive other source)
- Minimize base capacitance
 - Limit parasitics
 - Limit sensor size
- Maximize impact of change
 - Match sensor & finger areas for greatest delta-C
 - Minimize distance between sensor and finger
- Sensitivity

\[C = \frac{\varepsilon_0 \varepsilon_r A}{d} \]

<table>
<thead>
<tr>
<th>Material</th>
<th>Dielectric Constant ((\varepsilon_r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum</td>
<td>1 (by definition)</td>
</tr>
<tr>
<td>Air</td>
<td>1.00054</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>2.25</td>
</tr>
<tr>
<td>Paper</td>
<td>3.5</td>
</tr>
<tr>
<td>Pyrex glass</td>
<td>4.7</td>
</tr>
<tr>
<td>Rubber</td>
<td>7</td>
</tr>
<tr>
<td>Silicon</td>
<td>11.68</td>
</tr>
</tbody>
</table>

© 2006 Texas Instruments Inc, Slide 8
Capacitive PCB Sensor

- Copper pour on PCB makes a good sensor element
- ~10-20mil spacing between sensor & adjacent elements
- Size pads to maximize finger overlap for max delta C
- Simple pads can also be good sliders
- For true sliders, sizing pads such that more than one is touched at a time helps determine position
PCB Thickness

- Material and thickness matters
 - Goal 1: Small base C
 - Goal 2: Stable base C

\[
C = \frac{\varepsilon_0 \varepsilon_r A}{d}
\]

- As d decreases, the base capacitance increase
- For a given sensor size and insulator thickness, the delta C created by a touch is fairly constant
- This change is a smaller percentage of the base C as d goes down
- Thinner PCBs require more care in insulator selection and thickness
Layout & Grounding

• Minimize noise & signal coupling with solid ground pour on sensor side of PCB

• Hatch pour underneath sensors if possible
 ▪ Solid pour ok for noise, but increases base capacitance (larger A)
 ▪ No pour has no increase in base capacitance but no noise benefits
 ▪ A hatch of 50% is a good compromise
Sensors & Ground Influence

- Tradeoff between PCB ground pour under sensors and sensitivity
 - **No Pour**
 - Low base C
 - Small delta C
 - **25-75%**
 - Base C increases
 - Larger delta C
 - **Solid Pour**
 - Large base C
 - Harder to influence change = lower delta C

Delta C vs. Pour
(8x8mm sensor on 1.5mm FR4)
Insulators & Assembly

- An insulator is usually needed between PCB and user
- Insulator material must be non-conductive
- Thin is better
 - C is inversely proportional to the distance between the conductors
- No air should be present between insulator and the sensors on the PCB
 - C is proportional to the dielectric constant
- Use adhesives to secure sensor and insulator
 - Nonconductive adhesives, air-free
 - Those which tolerate temperature and humidity changes well are recommended
Insulator Spacing

• Achievable sensitivity is inversely proportional to insulator thickness
Agenda

• Overview of Touch Sensing Applications
• System-Level Careabouts
• MSP430 Implementations
• Keys, Sliders & Demos
• Summary
RO System Overview

- Osc created using comparator with frequency a function of sensor capacitance
- Charge/discharge limits set by R’s (1/3 Vcc & 2/3 Vcc)
- Freq is $1/(1.386 \times R_c \times C_{\text{sensor}})$
- delta C => delta f
RO Frequency Measurement

- Slow interrupt defines window for measurement
- Faster RO periods are counted via Timer_A
- CPU clock speed used to eliminate ISR s/w capture latency error

\[ACLK < RO \text{ Freq} < CPU \text{ MCLK} \]
Measurement Relationships

- Usable counts increase with measurement time
- Using VLO/64 for ACLK & DCO_cal/32768 for SMCLK
 - $(100K \, R \sim 625kHz \, f_{RO})$

\[
\begin{align*}
 f_{RO} &= \frac{1}{1.386 \times R \times C}, \\
 t_{RO} &= \frac{1}{f_{RO}}, \\
 t_{window} &= \frac{1}{f_{ACLK} / \text{DIV}_{ACLK} / \text{DIV}_{WDT}}, \\
 \text{or...} \\
 t_{window} &= \frac{1}{f_{DCO} / \text{DIV}_{SMCLK} / \text{DIV}_{WDT}} \\
 \text{counts} &= \frac{t_{window}}{t_{RO}}
\end{align*}
\]

RO Counts vs. C_Sensor

![Graph showing RO Counts vs. C_Sensor](image-url)
Complete RO System

- Requires Comp_A+ (needs mux input for multiple sensors)
- One external R per sensor, three for reference feedback
- External connection to TACLK
- Power Vref ladder via port pin for ULP
RO Current Consumption

- Longer t_{measure} = more counts
- Also means higher average I_{cc}
 - DCO: ~85uA @ 1MHz
 - Comp_A+: ~45uA
 - CA Vref: $V_{\text{cc}}/(1.5R)$ (for 100k R’s, ~20uA)

- Define t_{measure} for adequate counts for application
 - Bigger delta C, smaller t_{measure} can be used
 - Design to fewest counts needed for lowest current

<table>
<thead>
<tr>
<th>t_{meas} (ms)</th>
<th>$I_{\text{cc Avg}}$ (uA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
</tr>
</tbody>
</table>

1MHz SMCLK/x (counts)

Current & Measurement Time vs. Measurement Window (1\% C_delta)
RO Tradeoffs

• Needs Comp_A+ input mux for multiple sensors
• Sensors used limited by usable CA+ mux inputs
• External R’s needed to setup CA+ reference
• External CAOUT to TACLK required
• Good noise immunity: freq vs. voltage
• Programmable measurement time
• No high speed clock needed
• Measurement time dependent influenced by Vcc & Temp (VLO & DCO)
RC System Overview

- RC discharge time measured using interrupt on GPIO
- P1.x/P2.x GPIOs used
- Port pin used to charge sensor cap and measure discharge time
 - GPIO = Output high (charge C)
 - GPIO = Input (discharge C)
 - GPIO INT on low threshold
- Timer_A used to measure discharge time of C_sensor
RO Measurement Cycle

Charge Sensor
Set Px.y to Output High

Discharge Sensor
Set Px.y to Input w/ H-L INT enabled

Measure $t_{discharge}$
Start Timer_A & Enter LPM0

LPM0
Px.y INT?

Measure $t_{discharge}$
Stop Timer_A & Read TAR
Switch Px.y to Output Low

Enter LPM3

Switch to Next Sensor

Charge to VCC

Discharge to VSS

0xFFFF

TAR

ΔTAR

ΔTAR

VCC

Threshold

VSS

t_1

t_2

Active LPM0

Active LPM3

Active LPM0

Active LPM3

Technology for Innovators™
Measurement Relationships

• Usable counts increase with increased reference clock

• Using $\text{ACLK} = \text{VLO} \& \text{SMCLK} = \text{DCO_cal}$
 - 5.1Mohm R

$$V(t_{rc}) = Vcc \times e^{-\frac{t}{RC}}, V(t_{rc}) = Vcc \times [1 - e^{-\frac{t}{RC}}]$$

$$V_{IT-} = Vcc \times e^{-\frac{t_{charge}}{RC}}, V_{IT+} = Vcc \times [1 - e^{-\frac{t_{charge}}{RC}}]$$

$$V_{IT-} = 0.4 \times Vcc, V_{IT+} = 0.6 \times Vcc$$

$$t_{\text{discharge}} = -RC \times \ln(0.4), t_{\text{charge}} = -RC \times \ln(1 - 0.6)$$

$$t_{CLK} = \frac{1}{f_{DCO} / \text{DIV}_{SMCLK}}$$

$$\text{counts}_{\text{discharge}} = \frac{t_{\text{discharge}}}{t_{CLK}}, \text{counts}_{\text{charge}} = \frac{t_{\text{charge}}}{t_{CLK}}$$

$$\text{counts}_{\text{avg}} = \frac{\text{counts}_{\text{discharge}} + \text{counts}_{\text{charge}}}{2}$$
RC Optimizations

- Two sensor elements can share a single R
- Each sensor can be charged, then discharged for an average result: better noise rejection
RC Current Consumption

- t_{measure} is constant:
 $\sim 2 \times t_{\text{RC_charge}}$
 - $R = 5.1\, \text{Mohm}$
 - Counts TACLK

- Average I_{cc} depends on
 - $\tau = RC$
 - DCO current consumption

- Set TACLK for adequate counts for application
 - Bigger delta C, lower f_{DCO} can be used
 - Design to fewest counts needed for lowest current

<table>
<thead>
<tr>
<th>$I_{\text{cc_avg}}$ (uA)</th>
<th>t_{meas} (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>0.16</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Current & Measurement Time vs. Measurement Window (1% C_{delta})

© 2006 Texas Instruments Inc, Slide 26
RC System Careabouts

- Requires interrupt enabled GPIO for measurement
- One pin per sensor, shared resistor per two sensors
- \(R \) is Mohm's \(5.1 \text{M} \)
 - With pF C, large \(R \) required for a measurable charge/discharge time
- Low pin leakage of MSP430 ideal for the methodology
- Noise rejection aided by charge/discharge average
- Measurement window is fixed by RC charge/discharge time: high freq reference clock needed to “count”
- Measurement counts dependent on Vcc & Temp (DCO)
Agenda

• Overview of Touch Sensing Applications
• System-Level Careabouts
• MSP430 Implementations
• Keys, Sliders & Demos
• Summary
Touch Sensor Careabouts

• What is the application:
 ▪ A switch replacement?
 ▪ Position detection? (e.g. slider)

• Threshold: Establish a “usable” limit
 ▪ Can it be reached?
 ▪ Enough noise margin?
 ▪ Tolerant to manufacturing changes?

• Filtering: Noise coupling
 ▪ Given large R in RC method, noise can easily couple in
 ▪ Multi-result averaging: RC charge/discharge method
 ▪ RO method inherently immune due to multiple cycles per measurement

• Tracking: Baseline capacitance can shift
 ▪ Periodically adjust base capacitance count set-point
 ▪ Take care to exclude a “touched” sensor result from any tracking algorithm
Tracking C_base

• C_base measurement result can change over time
 ▪ Humidity effects
 ▪ Temperature
 ▪ Component tolerances
 ▪ Voltage drift

• Failure to track this change adequately can result in false key events or inability to detect events

• Algorithm basics:
 ▪ Adjust for a decreasing C rapidly, e.g. on each measurement, since this is not a function of sensor excitation
 ▪ Adjust for increasing C very slowly as this may be due to a finger hovering over a key, not just C_base drift
 ▪ Exclude an increasing C adjustment when any keys are pressed as it may be caused by the user, not C_base drift
Example: C base Tracking

- Adjust base result quickly when cap decreases
 - Ex: re-average with current result

- Adjust base result slowly when cap increases
 - Ex: adjust by 1 with each measurement
 - Only adjust if no keys are pressed

- Set “Threshold” level low enough that the sum of all key deltas will be greater if any key is press
 - Alternatively, can adjust on per key basis

- Note: sign of delta calc changes for the two methods
 - RO: counts decrease when key excited
 - RC: counts increase when key excited

\[
\text{Delta}_{i} = \text{base}_{i} - \text{meas}_{i}
\]
\[
\text{if } \text{Delta}_{i} < 0: \{ \text{base}_{i} = (\text{base}_{i} + \text{meas}_{i}) / 2 \}
\]
\[
\text{Delta}_{i} = 0
\]
\[
\text{Delta}_{\text{total}} += \text{delta}_{i}
\]
\[
i++
\]
\[
i = \text{max}？
\]
\[
\text{If Delta}_{\text{total}} < \text{Threshold:}
\]
\[
\text{\{base}_{i} = \text{base}_{i} - 1}\]
Data Filtering

• Measurement results often noisy due to a number of factors including voltage supply

• When enough counts can be measured, simply throwing away the LSBs may be good enough
 ▪ Works ok for simple key press detection

• A low pass filter of each key result will more adequately remove any unwanted noise and help stabilize the results, especially when measuring position on a slider

• Critical when counts are at a premium in the system due to constraints such as the PCB, insulator and power budget
Key Press Detection

• Measurement Flow
 ▪ Step 1: Establish a base count measurement
 ▪ Step 2: Set a key press count threshold
 ▪ Step 3: Scan keys

• Set detection threshold ~50% of maximum count
 delta expected from the given implementation
Key Pad Current Consumption

RO Method
• Use smallest t_{meas} (lowest SMCLK) for needed counts
 - ΔC 5% 1MHz, WDT= SMCLK/1/512
 - ΔC 2% 1MHz, WDT= SMCLK/4/512

RC Method
• Use lowest TACLK for needed counts
 - ΔC 5% 8MHz TACLK
 - ΔC 2% 16MHz TACLK

Sensor Switch Application- RO
Current & SPS vs. Sensor Count (~20 counts)

Sensor Switch Application- RC
Current & SPS vs. Sensor Count (~20 counts)
Demo: ULP Key Detection

- RC measurement flow

```
// RC Method: Measurement Excerpt
...
P1OUT &=~(BIT0+BIT1+BIT2+BIT3); // everything is low
P1OUT |= active_key; // Charge the sensor
_NOP();_NOP();_NOP(); // short time for hard pull high
P1IES |= active_key; // -ve edge trigger
P1IE |= active_key;
P1DIR &= ~active_key; // set the active key to input
timer_count = TAR; // Take a snapshot of the timer
LPM0;
meas_cnt[i]= timer_count;
... // Now repeat with charging cycle and average results
```

```
// Port ISR
...
timer_count=TAR-timer_count; // Get charge/discharge time
...```
Demo: ULP Key Detection

- RO measurement flow

```c
// RO Method: Measurement Excerpt
TACTL = TASSEL_0+MC_2; // TACLK, cont mode
TACCTL1 = CM_3+CCIS_2+CAP; // Pos&Neg Capture
CACTL1 |= CAON; // Turn on comparator
for (i = 0; i<Num_Sen; i++)
{switch (i)
 {case 0: // Sensor 1
 CAPD = CA_Ref+S_1; // Disable I/O: CA1 ref, 1st sensor
 CACTL2 = CA_1+CA_2; // CA1 ref, CAx sensor
 break;
 ...
 }
} WDTCTL = WDT_meas_setting; // Set duration of sensor measurement
TACTL |= TACLR; // Clear Timer A TAR
LPM0; // Wait for WDT interrupt
meas_cnt[i] = TACCR1; // Save result

// WDT ISR
...
TACCTL1 ^= CCIS0; // Create SW capture of CCR1
...
```
Slider Scanning

• Measurement Flow
  - Step 1: Establish a base count measurement
  - Step 2: Set a key press count threshold
  - Step 3: Scan keys
  - Step 4: Calculate position based on counts for each key

• Apply linear weighting algorithm

• Filter noise counts for jitter-free operation
Position

• Establish design to steps/sensor required
  ▪ Sensor size
  ▪ Insulator thickness

• Smoothly linearize steps across the slider

Get key delta & limit to max value
position_{KEY} = \text{delta} / \text{step size}

If KEY pressed: Slider position = position_{KEY} + steps \times weight_{KEY}
(0, 1, 2, 3...)

Set max delta expected
Set steps per key (steps_{KEY})
Step size = max delta / steps_{KEY}
(slider steps = steps_{KEY} \times \#\text{keys})
Endpoint

- **Handle end-point touch**
  - Press beyond max
  - Movement beyond max
  - Movement from max

![](endpoint_diagram.png)

<table>
<thead>
<tr>
<th>Key</th>
<th>Threshold</th>
<th>Min position</th>
<th>Max position</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4-key Slider Current Consumption

RO Method
- \( t_{\text{meas}} \) user programmable
  - Larger window = more counts
  - Define smallest window for needed counts, use lowest DCO for window

RC Method
- \( t_{\text{meas}} \) is fixed by RC
  - Faster TACLK = more counts
  - Don’t divide TACLK, set = to fastest DCO required for needed counts

Sensor Slider Application- RO
Count Delta & Current Consumption vs. SMCLK (~5SPS)

Sensor Slider Application- RC
Count Delta & Current Consumption vs. SMCLK (~5SPS)
Demo: ULP Slider Detection

```c
// Sensor slider definitions
#define Num_Sen 4 // # of sensors
#define KEY_lvl 5 // min count for a "key press"
 // Must be less than step_size
#define max_cnt 100 // Set below actual max delta expected
#define num_steps 16 // How many steps per key?
#define step_size (max_cnt/num_steps) // Step size for position

...if (delta_cnt[i] > max_cnt) // count exceeds preset upper delta
delta_cnt[i] = max_cnt; // limit to set point

key_pos[i] = delta_cnt[i]/step_size; // individual "position"

if (key_pos[i] > 0) // If the key is "pressed",
 position = key_pos[i] + num_steps*(i); // Pos=0-16, key weight
```

- Determine legitimate number of steps for a given application
- Linearize across all sensors for entire slider span
Demo: ULP Slider Endpoint

// Handle max end of slider
if (key_press[3] && position_old == Num_Sen*num_steps)
        position = Num_Sen*num_steps; // moving beyond the max
    }
    position = Num_Sen*num_steps; // approaching from max
Multiplexed Sliders

- Multiplex sensors for better pin:sensor ratio
  - Increases base capacitance
  - Measured delta C will be lower
- Mux for unique pattern for each position
- Multiple sensors should be excited for proper location & direction detection
ATC2006 Touchpad Interface

- 8 port pins used
- 2x8 = 16 sensors
- 0-7: P1.0-P1.5, P2.6, P2.7
Agenda

• Overview of Touch Sensing Applications
• System-Level Careabouts
• MSP430 Implementations
• Keys, Sliders & Demos
• Summary
Summary

• Capacitive touch sensing can be an attractive option
  ▪ …for existing switch replacement
  ▪ … and more: potentiometer replacement, multi-position switches

• MSP430 RO Method
  ▪ Works in Comp_A+ devices
  ▪ Number of independent sensors limited by CA+ mux
  ▪ Needs 1 external R per sensor + reference ladder
  ▪ Sensitivity limited by current consumption, flexible measurement time

• MSP430 RC Method
  ▪ Can be implemented on any MSP430
  ▪ Up to 16 independent sensors (16 interruptible GPIOs)
  ▪ Single external R per two sensors
  ▪ Sensitivity limited by on-chip max clock frequency, fixed measurement time
  ▪ Lowest power implementation
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, and the Buyer's use of TI products in such applications. Buyers acknowledge and agree that they shall fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
</tr>
<tr>
<td>Low Power</td>
<td>Video &amp; Imaging</td>
</tr>
<tr>
<td>Wireless</td>
<td>Wireless</td>
</tr>
</tbody>
</table>

www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated