
T430-1

MSP430 IAR EMBEDDED
WORKBENCH™

Tutorials

for Texas Instruments’
MSP430 Family

T430-1

ii

COPYRIGHT NOTICE
© Copyright 2000 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written
consent of IAR Systems. The software described in this document is
furnished under a license and may only be used or copied in accordance
with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and
does not represent a commitment on any part of IAR Systems. While the
information contained herein is assumed to be accurate, IAR Systems
assumes no responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the
authors of this document be liable for special, direct, indirect, or
consequential damage, losses, costs, charges, claims, demands, claim for
lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR and C-SPY are registered trademarks of IAR Systems. IAR
Embedded Workbench, IAR XLINK Linker, and IAR XLIB Librarian are
trademarks of IAR Systems. MSP430 is a trademark of Texas
Instruments. Acrobat Reader is a registered trademark of Adobe Systems
Incorporated. Microsoft is a registered trademark, and Windows is a
trademark of Microsoft Corporation. Pentium® is a registered trademark
of Intel Corporation. Codewright is a registered trademark of Premia
Corporation.

All other product names are trademarks or registered trademarks of their
respective owners.

First edition: June 2000

Part number: T430-1

T430-1

iii

WELCOME Welcome to the MSP430 IAR Embedded Workbench™ Tutorials.

This guide exemplifies how you use the IAR Embedded Workbench™ with
its integrated Windows development tools for the MSP430 Family.

Refer to the complete set of manuals for detailed information about the
development tools incorporated in the IAR Embedded Workbench.

If you want to know more about IAR Systems, visit the website
www.iar.com where your will find company information, product
news, technical support, and much more.

ABOUT THIS GUIDE This guide consists of the following parts:

� IAR Embedded Workbench tutorial describes a typical development
cycle using the IAR Embedded Workbench, the MSP430 IAR
Compiler, and the IAR XLINK Linker™. It also introduces you to the
IAR C-SPY Debugger.

� Compiler tutorials illustrates how you might use the IAR Embedded
Workbench and the IAR C-SPY Debugger to develop a series of
typical programs for the MSP430 IAR Compiler, using some of the
compiler’s most important features.

� Assembler tutorials illustrates how you might use the IAR Embedded
Workbench and the IAR C-SPY Debugger to develop machine-code
programs, using some of the most important features of the MSP430
IAR Assembler. It also introduces you to the IAR XLIB Librarian™.

� Advanced tutorials illustrates how you might use both code written
for the MSP430 IAR Compiler and code written for the MSP430
IAR Assembler in the same project. It also explores the functionality
of the IAR C-SPY Debugger.

PREFACE

T430-1

iv

ASSUMPTIONS AND
CONVENTIONS

ASSUMPTIONS
This guide assumes that you have a working knowledge of the following:

� The C programming language and the IAR MSP430 assembly
language.

� The architecture and instruction set of the MSP430 Family.

� The procedures for using menus, windows, and dialog boxes in a
Windows environment.

Note: The illustrations in this guide show the IAR Embedded Workbench
running in a Windows 95-style environment, and their appearance will
be slightly different if you are using another platform.

CONVENTIONS
This user guide uses the following typographical conventions:

Style Used for

computer Text that you type in, or that appears on the screen.

parameter A label representing the actual value you should type
as part of a command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and
dialog boxes that appear on the screen.

reference A cross-reference to another part of this guide, or to
another guide.

Identifies instructions specific to the IAR Embedded
Workbench versions of the IAR development tools.

Identifies instructions specific to the command line
versions of the IAR development tools.

PREFACE

T430-1

v

CONTENTS

TUTORIALS... 1

IAR EMBEDDED WORKBENCH TUTORIAL 3
Tutorial 1 3

COMPILER TUTORIALS .. 23
Tutorial 2 23
Tutorial 3 27

ASSEMBLER TUTORIALS.. 37
Tutorial 4 37
Tutorial 5 44

ADVANCED TUTORIALS .. 49
Tutorial 6 49
Tutorial 7 56
Tutorial 8 60

INDEX .. 63

CONTENTS

T430-1

vi

T430-1

1

TUTORIALS
The MSP430 IAR Embedded Workbench™ Tutorials contains the
following chapters:

� IAR Embedded Workbench tutorial

� Compiler tutorials

� Assembler tutorials

� Advanced tutorials.

You should install the IAR development tools before running these
tutorials.

TUTORIALS

T430-1

2

T430-1

3

IAR EMBEDDED
WORKBENCH TUTORIAL
This chapter introduces you to the IAR Embedded Workbench™ and the
IAR C-SPY® Debugger. It demonstrates how you might create and debug
a small program for the IAR Compiler.

Tutorial 1 describes a typical development cycle:

� We first create a project, add source files to it, and specify target
options.

� We then compile the program, examine the list file, and link the
program.

� Finally we run the program in the IAR C-SPY Debugger.

Alternatively, you may follow this tutorial by examining the list files
created. They show which areas of memory to monitor.

TUTORIAL 1 We recommend that you create a specific directory where you can store
all your project files, for example the 430\projects directory.

CREATING A NEW PROJECT
The first step is to create a new project for the tutorial programs. Start the
IAR Embedded Workbench, and select New... from the File menu to
display the following dialog box:

The Help button provides access to information about the IAR
Embedded Workbench. You can at any time press the F1 key to access the
online help.

Select Project and choose OK to display the New Project dialog box.

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

T430-1

4

Enter Project1 in the File name box, and set the Target CPU Family
to MSP430. Specify where you want to place your project files, for
example in a projects directory:

Then choose Create to create the new project.

The Project window will be displayed. If necessary, select Debug from
the Targets drop-down list to display the Debug target:

Now set up the target options to suit the processor variant in this tutorial.

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

T430-1

5

Select the Debug folder icon in the Project window and choose
Options… from the Project menu. The Target options page in the
General category is displayed.

Make sure that the Processor Configuration option is set to -v0:

Then choose OK to save the target options.

THE SOURCE FILES
This tutorial uses the source files tutor.c and common.c, and the include
files tutor.h and common.h, which are all supplied with the product.

The program initializes an array with the ten first Fibonacci numbers and
prints the result in the Terminal I/O window.

The tutor.c program
The tutor.c program is a simple program using only standard C
facilities. It repeatedly calls a function that prints a number series to the
Terminal I/O window in C-SPY. A copy of the program is provided with
the product.

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

T430-1

6

#include "tutor.h"

/* Global call counter */
int call_count;

/* Get and print next Fibonacci number. */
void do_foreground_process(void)
{
 unsigned int fib;
 next_counter();
 fib = get_fib(call_count);
 put_fib(fib);
}

/* Main program. Prints the Fibonacci numbers. */
void main(void)
 {
 call_count = 0;
 init_fib();
 while (call_count < MAX_FIB)
 do_foreground_process();
 }

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

T430-1

7

ADDING FILES TO THE PROJECT
We will now add the tutor.c and common.c source files to the Project1
project.

Choose Files… from the Project menu to display the Project Files
dialog box. Locate the file tutor.c in the file selection list in the upper
half of the dialog box, and choose Add to add it to the Common Sources
group.

Then locate the file common.c and add it to the group.

Finally click Done to close the Project Files dialog box.

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

T430-1

8

Click on the plus sign icon to display the file in the Project window tree
display:

The Common Sources group was created by the IAR Embedded
Workbench when you created the project.

SETTING COMPILER OPTIONS
Now you should set up the compiler options for the project.

Select the Debug folder icon in the Project window, choose Options…
from the Project menu, and select ICC430 in the Category list to display
the IAR Compiler options pages:

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

T430-1

9

Make sure that the following options are selected on the appropriate
pages of the Options dialog box:

When you have made these changes, choose OK to set the options you
have specified. The remaining options should remain at their default
settings.

COMPILING THE TUTOR.C AND COMMON.C FILES
To compile the tutor.c file, select it in the Project window and choose
Compile from the Project menu.

Alternatively, click the Compile button in the toolbar or select the
Compile command from the pop-up menu that is available in the Project
window. It appears when you click the right mouse button.

The progress will be displayed in the Messages window.

You can specify the amount of information to be displayed in the
Messages window. In the Options menu, select Settings... and then
select the Make Control page.

Page Options

Code Generation Enable language extensions
Type checking:
 Global strict type checking
 Flag old-style functions
Optimization: Speed, Medium

Debug Generate debug information

List List file
Insert mnemonics

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

T430-1

10

Compile the file common.c in the same manner.

The IAR Embedded Workbench has now created new directories in your
project directory. Since you have chosen the Debug target, a Debug
directory has been created containing the new directories List, Obj, and
Exe:

� In the list directory, your list files from the Debug target will be
placed. The list files have the extension lst and will be located here.

� In the obj directory, the object files from the compiler and the
assembler will be placed. These files have the extension r43 and will
be used as input to the IAR XLINK Linker.

� In the exe directory, you will find the executable files. These files
have the extension d43 and will be used as input to the IAR C-SPY
Debugger.

VIEWING THE LIST FILE
Open the list file tutor.lst by selecting Open… from the File menu,
and selecting tutor.lst from the debug\list directory. Examine the
list file, which contains the following information:

The header shows the compiler version, information about when the file
was created, and the compiler options that were used:

##

#

IAR MSP430 C-Compiler VX.xxx/WIN

#

Compile time = dd/Mmm/yyyy hh:mm:ss

Target option = SP430x31x

Memory model = small

Source file = c:\iar\ew23\430\tutor\tutor.c

List file = c:\iar\ew23\430\projects\debug\list\tutor.lst

Object file = c:\iar\ew23\430\projects\debug\obj\tutor.r43

Command line = -OC:\IAR\ew23\430\projects\Debug\Obj\ -e -gA -s6

-RCODE -r0 -LC:\IAR\ew23\430\projects\Debug\List\

-q -t8 -IC:\IAR\ew23\430\inc\

C:\IAR\ew23\430\tutor\tutor.c

#

Copyright yyyy IAR Systems. All rights reserved.

##

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

T430-1

11

The body of the list file shows the assembler code and binary code
generated for each C statement. It also shows how the variables are
assigned to different segments:

 25 void main(void)

 26 {

 27 call_count = 0;

 \ 0012 82430000 MOV #0,&call_count

 28 init_fib();

 \ 0016 B0120000 CALL #init_fib

 \ 001A ?0001:

 29 while (call_count < MAX_FIB)

 \ 001A B2900A00 CMP #10,&call_count

 \ 001E 0000

 \ 0020 0334 JGE (?0000)

 30 do_foreground_process();

 \ 0022 B0120000 CALL #do_foreground_process

 31 }

 \ 0026 F93F JMP (?0001)

 \ 0028 ?0000:

 \ 0028 3041 RET

 32

 \ 0000 RSEG UDATA0

The end of the list file shows the amount of code memory required, and
contains information about error and warning messages that may have
been generated:

Errors: none

Warnings: none

Code size: 42

Constant size: 0

Static variable size: 2

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

T430-1

12

LINKING THE TUTOR.C PROGRAM
First set up the options for the IAR XLINK Linker™:

Select the Debug folder icon in the Project window and choose
Options… from the Project menu. Then select XLINK in the Category
list to display the XLINK options pages:

Make sure that the following options are selected on the appropriate
pages of the Options dialog box:

If you want to examine the linker command file, use a suitable text editor,
such as the IAR Embedded Workbench editor, or print a copy of the file.

Page Options

Output Debug info with terminal I/O

List Generate linker listing
Segment map
Module map

Include Override default: lnk430.xcl (the linker command
file)

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

T430-1

13

The definitions in the linker command file are not permanent; they can
be altered later on to suit your project if the original choice proves to be
incorrect, or less than optimal. For more information about linker
command files, see the Configuration chapter in the MSP430 C Compiler
Programming Guide.

Choose OK to save the XLINK options.

The chapter XLINK options reference in the MSP430 Assembler, Linker,
and Librarian Programming Guide contains information about the
XLINK options available in the IAR Embedded Workbench, to be used in
the linker command file and on the command line.

Now you should link the object file to generate code that can be debugged.
Choose Link from the Project menu. The progress will be displayed in
the Messages window:

The result of the linking is a code file project1.d43 with debug
information and a map file project1.map.

Viewing the map file
Examine the project1.map file to see how the segment definitions and
code were placed into their physical addresses. Following are the main
points of interest in a map file:

� The header includes the options used for linking, XLINK version
and time of linking.

� The CROSS REFERENCE section shows the address of the program
entry.

� The MODULE MAP shows the files that are linked. For each file,
information about the modules that were loaded as part of the
program, including segments and global symbols declared within
each segment, is displayed.

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

T430-1

14

� The SEGMENTS IN ADDRESS ORDER section lists all the segments that
constitute the program.

Viewing the build tree
In the Project window, press the right mouse button and select Save as
Text... from the pop-up menu that appears. This creates a text file that
allows you to conveniently examine the options for each level of the
project.

Notice that the text file will contain the command line equivalents to the
options that you have specified in the IAR Embedded Workbench. The
command line options are described in the MSP430 C Compiler
Programming Guide and MSP430 Assembler, Linker, and Librarian
Programming Guide, respectively.

RUNNING THE PROGRAM
Now we will run the project1.d43 program using the IAR C-SPY
Debugger to watch variables, set a breakpoint, and print the program
output in the Terminal I/O window.

Choose Debugger from the Project menu in the IAR Embedded
Workbench. Alternatively, click the C-SPY button in the toolbar.

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

T430-1

15

A C-SPY window will be opened for this file:

C-SPY starts in source mode, and will stop at the first executable
statement in the main function. The current position in the program,
which is the next C statement to be executed, is shown highlighted in the
Source window.

The corresponding assembler instructions are always available. To
inspect them, select Toggle Source/Disassembly from the View menu.
Alternatively, click the Toggle Source/Disassembly button in the
toolbar. In disassembly mode stepping is executed one assembler
instruction at a time. Return to source mode by selecting Toggle
Source/Disassembly again.

Execute one step by choosing Step from the Execute menu.
Alternatively, click the Step button in the toolbar. At source level Step
executes one source statement at a time.

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

T430-1

16

The current position should be the call to the init_fib function:

Select Step Into from the Execute menu to execute init_fib one step
at the time. Alternatively, click the Step Into button in the toolbar.

When Step Into is executed you will notice that the file in the Source
file list box (to the upper left in the Source window) changes to common.c
since the function init_fib is located in this file. The Function list box
(to the right of the Source file list box) shows the name of the function
where the current position is.

Step four more times. Choose Multi Step… from the Execute menu, and
enter 4.

You will notice that the three individual parts of a for statement are
separated, as C-SPY debugs on statement level, not on line level. The
current position should now be i++:

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

T430-1

17

WATCHING VARIABLES
C-SPY allows you to set watchpoints on C variables or expressions, to
allow you to keep track of their values as you execute the program. You
can watch variables in a number of ways; for example, you can watch a
variable by pointing at it in the Source window with the mouse pointer,
or by opening the Locals window. Alternatively, you can open the
QuichWatch window from the pop-up menu that appears when you press
the right mouse button in the Source window.

Here we will use the Watch window. Choose Watch from the Window
menu to open the Watch window, or click the Watch Window button in
the toolbar. If necessary, resize and rearrange the windows so that the
Watch window is visible.

Set a watchpoint on the variable i using the following procedure: Select
the dotted rectangle, then click and briefly hold the left mouse button. In
the entry field that appears when you release the button, type: i and press
the Enter key.

You can also drag and drop a variable into the Watch window. Select the
root array in the init_fib function in the Source window. When root
is marked, drag and drop it in the Watch window.

The Watch window will show the current value of i and root:

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

T430-1

18

root is an array and can be watched in more detail. This is indicated in
the Watch window by the plus sign icon to the left of the variable. Click
the symbol to display the current contents of root:

Now execute some more steps to see how the values of i and root change.

Variables in the Watch window can be specified with module name and
function name to separate variables that appear with the same name in
different functions or modules. If no module or function name is
specified, its value in the current context is shown.

SETTING BREAKPOINTS
You can set breakpoints at C function names or line numbers, or at
assembler symbols or addresses. The most convenient way is usually to
set breakpoints interactively, simply by positioning the cursor in a
statement and then choosing the Toggle Breakpoint command.

To display information about breakpoint execution, make sure that the
Report window is open by choosing Report from the Window menu.
You should now have the Source, Report, and Watch windows on the
screen; position them neatly before proceeding.

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

T430-1

19

Set a breakpoint at the statement i++ using the following procedure: First
click in this statement in the Source window, to position the cursor. Then
choose Toggle Breakpoint from the Control menu, click the Toggle
Breakpoint button in the toolbar, or click the right mouse button in the
Source window.

A breakpoint will be set at this statement, and the statement will be
highlighted to show that there is a breakpoint there:

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

T430-1

20

EXECUTING UP TO A BREAKPOINT
To execute the program continuously, until you reach a breakpoint,
choose Go from the Execute menu, or click the Go button in the toolbar.

The program will execute up to the breakpoint you set. The Watch
window will display the value of the root expression and the Report
window will contain information about the breakpoint:

Remove the breakpoint by selecting Edit breakpoint from the Control
menu. Alternatively, click the right mouse button to display a pop-up
menu. Select the breakpoint in the Breakpoints list and press Clear.
Then close the Breakpoints dialog box.

CONTINUING EXECUTION
Open the Terminal I/O window, by choosing Terminal I/O from the
Window menu, to display the output from the I/O operations.

To complete execution of the program, select Go from the Execute menu,
or click the Go button in the toolbar.

IAR EMBEDDED WORKBENCH TUTORIAL TUTORIAL 1

T430-1

21

Since no more breakpoints are encountered, C-SPY reaches the end of the
program and erases the contents of the Source window. A program EXIT
reached message is printed in the Report window:

If you want to start again with the existing program, select Reset from the
Execute menu, or click the Reset button in the toolbar.

EXITING FROM C-SPY
To exit from C-SPY choose Exit from the File menu.

C-SPY also provides many other debugging facilities. Some of these are
described in the following tutorial chapters, for example defining virtual
registers, using C-SPY macros, debugging in disassembly mode, displaying
function calls, profiling the application, and displaying code coverage.

For detailed information about the features of C-SPY, see the Command
reference chapter in MSP430 C-SPY User Guide.

TUTORIAL 1 IAR EMBEDDED WORKBENCH TUTORIAL

T430-1

22

T430-1

23

COMPILER TUTORIALS
This chapter introduces you to some of the IAR Compiler’s
MSP430-specific features:

� Tutorial 2 demonstrates how to utilize MSP430 peripherals with the
IAR Compiler features. The #pragma directive allows us to use the
MSP430-specific language extensions. Our program will be extended
to handle polled I/O. Finally, we run the program in C-SPY and
create virtual registers.

� In Tutorial 3 we modify the tutorial project by adding an interrupt
handler. The system is extended to handle the real-time interrupt
using the MSP430 IAR Compiler intrinsics and keywords. Finally,
we run the program using the C-SPY interrupt system in
conjunction with complex breakpoints and macros.

Before running these tutorials, you should be familiar with the
IAR Embedded Workbench and the IAR C-SPY Debugger as described in
the previous chapter, IAR Embedded Workbench tutorial.

TUTORIAL 2 This IAR Compiler tutorial will demonstrate how to simulate the
MSP430 Universal Synchronous/Asynchronous Receive/Transmit
(USART) Communication Interface using the IAR Compiler features.
The #pragma directive allows us to use the MSP430-specific language
extensions. Our program will be extended to handle polled I/O. We will
run the program in C-SPY and create virtual registers.

THE TUTOR2.C SERIAL PROGRAM
The following listing shows the tutor2.c program. A copy of the
program is provided with the product.

#include <stdio.h>
#include "tutor2.h"

/* Global call counter */
int call_count;

/* Get and print next Fibonacci number. */
void do_foreground_process(void)

TUTORIAL 2 COMPILER TUTORIALS

T430-1

24

{
 unsigned int fib;
 if (receive_ok())/* wait for receive data */
 {
 next_counter();
 fib = get_fib(call_count);
 put_fib(fib);
 }
 else
 putchar(’.’);
}

/* Main program. Prints the Fibonacci numbers. */
void main(void)
{
 init_cntr();
 init_fib();
 while (call_count < MAX_FIB)
 do_foreground_process();
}

COMPILING AND LINKING THE TUTOR2.C SERIAL
PROGRAM
Modify the Project1 project by replacing tutor.c with tutor2.c:

Choose Files… from the Project menu. In the dialog box Project Files,
mark the file tutor.c in the Files in Group box. Click on the Remove
button to remove the tutor.c file from the project. In the File Name list
box, select the tutor2.c file and click on the Add button. Now the Files
in Group should contain the files common.c and tutor2.c.

Click on the Done button to close the Project Files dialog box.

Then select Options... from the Project menu. In the General category,
select target processor configuration -v1. In the ICC430 category, make
sure that language extensions are enabled and that debug information
will be generated. In the XLINK category, click the Include tab and select
the linker command file lnk430m.xcl.

Now you can compile and link the project by choosing Make from the
Project menu.

COMPILER TUTORIALS TUTORIAL 2

T430-1

25

RUNNING THE TUTOR2.C SERIAL PROGRAM
Start the IAR C-SPY Debugger and run the modified project1 project.
Step until you reach the while loop, where the program waits for input.
Open the Terminal I/O window, where the tutor2 result will be printed.

DEFINING VIRTUAL REGISTERS
To simulate different values for the serial interface, we will make a new
virtual register called STATUS_REG.

Choose Settings... from the Options menu. On the Register Setup
page, click the New button to add a new register. Now the Virtual
Register dialog box will appear.

TUTORIAL 2 COMPILER TUTORIALS

T430-1

26

Enter the following information in the dialog box:

Then choose OK in both dialog boxes. Open the Register window from
the Window menu, or select the Register Window button in the
toolbar. STATUS_REG should now be included in the displayed list of
registers. The current value of each bit in the serial interface register is
shown:

As you step through the program you can enter new values into
STATUS_REG in the Register window. When the first bit (0x01) is set, a
new Fibonacci number will be printed, and when the bit is cleared, a
period (.) will be printed instead. You set the bit by changing the value
and pressing the Enter key.

When the program has finished running, you may exit from C-SPY.

Input field Input Description

Name STATUS_REG Virtual register name

Size 1 One byte

Base 2 Binary values

Address 03 Memory location (in hex)

Segment Memory Segment name

COMPILER TUTORIALS TUTORIAL 3

T430-1

27

TUTORIAL 3 In this tutorial we change from polled I/O to interrupt-driven I/O.

We will define an interrupt function that handles the received interrupt,
and we will use the C-SPY macro system to simulate the interrupt that
feeds the Fibonacci numbers to the buffer.

Note: In the C library, all I/O functions are buffered; this may cause input
or output to be lost when an interrupt occurs. To prevent this problem,
you can guard your call to the I/O functions by using the extended
keyword monitor, which disables all interrupts during execution of
guarded functions. To watch the consequences of unguarded functions,
you may remove all occurrences of the monitor keyword in the common.c
and tutor3.c files and run the program with different intervals between
the interrupts.

THE TUTOR3.C INTERRUPT PROGRAM
The following is a complete listing of the tutor3.c interrupt program. A
copy of the program is provided with the product.

#include <stdio.h>
#include "tutor3.h"

/* Global call counter */
int call_count;

/* Get and print next Fibonacci number. */
/* The receive buffer has vector address 0xFFEE, ie
offset 0xE in INTVECT */
interrupt [0x0E] void RXinterrupt(void)
{
 unsigned int fib;

 next_counter();
 fib = RXBUF;
 put_fib(fib);
}

monitor void do_foreground_process(void)
{
 putchar (’.’);
}

TUTORIAL 3 COMPILER TUTORIALS

T430-1

28

/* Main program. Prints the Fibonacci numbers. */
void main(void)
{
 init_cntr();
 init_fib();

 /* Enable interrupts */
 _EINT();

 while (call_count < MAX_FIB)
 do_foreground_process();
 }

The addresses for the SFR registers are defined in the header file io330.h.

The start address of the interrupt handler must be located at the correct
offset in the interrupt table. The receive buffer interrupt has the vector
address 0xFFEE, i.e. offset 0x0E.

Use the interrupt keyword to define the interrupt handler:

interrupt [0x0E] void RXinterrupt(void)

Extended keywords are described in the MSP430 C Compiler
Programming Guide.

The interrupt handler will read the latest Fibonacci value from the
receive buffer. It will then print the value using the put_fib function.

The main program initializes the USART communication channel,
enables interrupts and then starts printing periods (.) in the foreground
process while waiting for interrupts.

THE C-SPY TUTOR3.MAC MACRO FILE
In the C-SPY macro file called tutor3.mac, we use system and
user-defined macros. Notice that this example is not intended as an exact
simulation; the purpose is to illustrate a situation where C-SPY macros
can be useful. For detailed information about macros, see the chapter
System macros in MSP430 C-SPY User Guide.

COMPILER TUTORIALS TUTORIAL 3

T430-1

29

Initializing the system
The macro execUserSetup() is automatically executed during C-SPY
setup:

execUserSetup()
{
 message "execUserSetup() called\n";
 Tutor3Setup ();
}

First we print a message in the C-SPY Message window so that we know
that this macro has been executed.

Then we call the Tutor3Setup() user-defined macro:

Tutor3Setup()
{
 message "Tutor3Setup() called\n";
 // Open the tutor3.txt as input file
 // Note: The path should be modified
 if(__openFile(_FileHandle,
"C:\\iar\\ew23\\430\\tutor\\tutor3.txt", "r"))
 __printLastMacroError();

 // Set up an interrupt
 _InterruptID =
 __orderInterrupt("0xFFEE", 3000, 2000, 0, 0, 100);

 // Set breakpoint that triggers the Access()
 // Recieve data register (RXBUF)
 __setBreak("0x76", "PGM", 1, 1, "", "TRUE",
 "I", "Access()");
 }

The Fibonacci numbers are read from a supplied file, tutor3.txt. We
open the file for reading in ASCII mode, which means that the data in the
file is in hexadecimal notation without the prefix 0x. Notice that you may
need to modify the path of the tutor3.txt file.

TUTORIAL 3 COMPILER TUTORIALS

T430-1

30

Generating interrupts
The _ _orderInterrupt system macro orders C-SPY to generate
interrupts. The following parameters are used:

During execution, C-SPY will wait until the cycle counter has passed the
activation time, in this case 3000 cycles. Then it will, with 100%
certainty, generate an interrupt approximately every 2000 cycles.

Using breakpoints to simulate incoming values
We must also simulate the incoming values to the SCI. This is done by
setting a breakpoint at the receive buffer address and connecting a
user-defined macro to it. Here we use the _ _setBreak system macro.

The following parameters are used:

0xFFEE Specifies which interrupt vector to use (a string).

3000 Specifies the activation moment for the interrupt.
The interrupt is activated when the cycle counter
has passed this value.

2000 Specifies the repeat interval for the interrupt,
measured in clock cycles.

0 Time variance, not used here.

0 Latency, not used here.

100 Specifies probability. Here it denotes 100%. We
want the interrupt to occur at the given frequency.
Another percentage could be used to simulate a
more randomized interrupt behavior.

0x76 Receive buffer address.

“PGM” The memory segment where this address is found.
PGM is the valid MSP430 segment.

1 Length.

1 Count.

““ Denotes unconditional breakpoint.

“TRUE” Condition type.

COMPILER TUTORIALS TUTORIAL 3

T430-1

31

During execution, when C-SPY detects a read from the receive buffer
address, it will temporarily halt the simulation and run the Access
macro. Since this macro ends with a resume statement, C-SPY will then
resume the simulation and start by reading the receive buffer value.

The Access macro is executed whenever C-SPY tries to read the receive
buffer value, as defined in the _ _setBreak macro:

Access()
{
 message "Access() called\n";
 // Read a value from a file and write to sfr
 // Receive data register (RXBUF)
 __writeMemoryByte(__readFile(_FileHandle),0x76,"PGM");
resume;
}

First we print a message which is useful for debugging purposes.

Next we will read a value from the file and write it to the receive buffer
register in the PGM area.

Finally, the resume statement causes C-SPY to continue the simulation
process.

Resetting the system
The macro execUserReset() is automatically executed during C-SPY
reset. At reset, we want to rewind the input file:

execUserReset()
{
 message "execUserReset() called\n";
 _ _rewindFile(_FileHandle);
}

“I” The memory access type. Here we use “Read
Immediate” which means that C-SPY breaks before
reading the value at the specified address. This
gives us the opportunity to put the correct
Fibonacci value in the receive buffer before C-SPY
reads the value.

“Access ()” The macro connected to the breakpoint.

TUTORIAL 3 COMPILER TUTORIALS

T430-1

32

Exiting the system
The macro execUserExit() is automatically executed during C-SPY
exit:

execUserExit()
{
 message "execUserExit() called\n";
 Tutor3Shutdown();
}

TheTutor3Shutdown() user-defined macro is called to cancel the used
interrupt and to clear the receive-buffer breakpoint:

Tutor3Shutdown()
{
 message "Tutor3Shutdown() called\n";
 __cancelInterrupt(_InterruptID);
 __clearBreak("0x76","PGM","I");
 __closeFile(_FileHandle);
}

Finally we close the input file.

COMPILING AND LINKING THE TUTOR3.C PROGRAM
Modify Project1 by removing tutor2.c from the project and adding
tutor3.c to it. Compile and link the program by choosing Make from
the Project menu. Alternatively, select the Make button from the
toolbar. The Make command compiles and links those files that have
been modified.

COMPILER TUTORIALS TUTORIAL 3

T430-1

33

RUNNING THE TUTOR3.C INTERRUPT PROGRAM
To run the tutor3.c program, we first specify the macro to be used. The
macro file, tutor3.mac, is specified in the C-SPY options page in the
IAR Embedded Workbench:

If you use the IAR C-SPY Debugger without using the IAR Embedded
Workbench, the macro file can be specified via the command line
option -f.

Note: Macro files can also be loaded via the Options menu in the
IAR C-SPY Debugger. Due to its contents, the tutor3.mac file cannot,
however, be used in this manner because the execUserSetup macro will
not be activated until you load the project1.d43 file.

TUTORIAL 3 COMPILER TUTORIALS

T430-1

34

Start the IAR C-SPY Debugger by selecting Debugger from the Project
menu or click the Debugger icon in the toolbar. The C-SPY Source
window will be displayed:

The Report window will display the registered macros:

COMPILER TUTORIALS TUTORIAL 3

T430-1

35

If warning or error messages should also appear in the Report window,
make sure that the breakpoint has been set and that the interrupt has
been registered. If not, the reason is probably that an incorrect path is
specified in the tutor3.mac macro file.

Now you have a breakpoint in the interrupt function and an interrupt
that will be activated every 2000 cycles. To inspect the details of the
breakpoint, open the Breakpoints dialog box by selecting Edit
Breakpoints... from the Control menu. To inspect the details of the
interrupt, open the Interrupt dialog box by selecting Interrupt... from
the Control menu.

In the Source window, make sure that tutor3.c is selected in the Source
file box. Then select the RXinterrupt function in the Function box.

Place the cursor on the put_fib() statement in the RXinterrupt
function. Set a breakpoint by selecting Toggle Breakpoint from the
Control menu, or click the Toggle Breakpoint button in the toolbar.
Alternatively, use the pop-up menu.

Open the Terminal I/O window by selecting it from the Windows menu.

Run the program by choosing Go from the Execute menu or by pressing
the Go button. It should stop in the interrupt function. Press Go again in
order to see the next number being printed in the Terminal I/O window.

Since the main program has an upper limit on the Fibonacci value
counter, the tutorial program will soon reach the exit label and stop.

When tutor3 has finished running, the Terminal I/O window will
display the following Fibonacci series:

TUTORIAL 3 COMPILER TUTORIALS

T430-1

36

T430-1

37

ASSEMBLER TUTORIALS
These tutorials illustrate how you might use the IAR Embedded
Workbench™ to develop a series of simple machine-code programs for the
MSP430 Family, and demonstrate some of the IAR Assembler’s most
important features:

� In Tutorial 4 we assemble and link a basic assembler program, and
then run it using the IAR C-SPY® Debugger.

� Tutorial 5 demonstrates how to create library modules and use the
IAR XLIB Librarian™ to maintain files of modules.

Before running these tutorials, you should be familiar with the IAR
Embedded Workbench and the IAR C-SPY Debugger as described in the
chapter IAR Embedded Workbench tutorial.

TUTORIAL 4 This assembler tutorial illustrates how to assemble and link a basic
assembler program, and then run it.

CREATING A NEW PROJECT

Start the IAR Embedded Workbench and create a new project called
Project2.

Set up the target options in the General category. Make sure that the
Processor Configuration is set to -v0.

The procedure is described in Creating a new project, page 3.

THE FIRST.S43 PROGRAM
The first assembler tutorial program is a simple count loop which counts
up the registers R4 and R5 in binary-coded decimal. A copy of the
program first.s43 is provided with the product.

NAME first
ORG 0FFFEh
DW main

; counts up R4,R5 in binary coded decimal

ORG 0200h

TUTORIAL 4 ASSEMBLER TUTORIALS

T430-1

38

main CLR R4
CLR R5

loop CLRC
DADD.B #1,R4
CMP #10h,R4
JNE loop
CLR R4
CLRC
DADD.B #1,R5
JNE loop

done JMP done

END main

The ORG directive locates the program starting address at the program
reset vector address, so that the program is executed upon reset.

Add the program to the Project2 project. Choose Files… from the
Project menu to display the Project Files dialog box. Locate the file
first.s43 in the A430 subdirectory and choose Add to add it to the
Common Sources group.

You now have a source file which is ready to assemble.

ASSEMBLER TUTORIALS TUTORIAL 4

T430-1

39

ASSEMBLING THE PROGRAM
Now you should set up the assembler options for the project.

Select the Debug folder icon in the Project window, choose Options…
from the Project menu, and select A430 in the Category list to display
the assembler options pages.

Make sure that the following options are selected on the appropriate
pages of the Options dialog box:

Select OK to set the options you have specified.

Page Option

Code generation Case sensitive user symbols
Enable all warnings
Generate debug information

List List file

TUTORIAL 4 ASSEMBLER TUTORIALS

T430-1

40

To assemble the file, select it in the Project window and choose Compile
from the Project menu. The progress will be displayed in the Messages
window:

The listing is created in a file first.lst in the folder specified in the
General options page; by default this is Debug\list. Open the list file
by choosing Open… from the File menu, and selecting first.lst from
the appropriate folder.

VIEWING THE FIRST.LST LIST FILE
The first.lst list file contains the following information:

� The header contains product version information, the date and time
when the file was created, and also specifies the options that were
used.

� The body of the list file contains source line number, address field,
data field, and source line.

� The end of the file contains a summary of errors and warnings that
were generated, code size, and CRC.

Note: The CRC number depends on the date of assembly, and may
vary.

ASSEMBLER TUTORIALS TUTORIAL 4

T430-1

41

The format of the listing is as follows:

If you make any errors when writing a program, these will be displayed
on the screen during the assembly and will be listed in the list file. If this
happens, return to the editor by double-clicking on the error message.
Check carefully through the source code to locate and correct all the
mistakes, save the source file, and try assembling it again.

Assuming that the source assembled successfully, the file first.r43, will
also be created, containing the linkable object code.

LINKING THE PROGRAM
Before linking the program you need to set up the linker options for the
project.

Source line
number

Address field

Data field Source line

 8 000200 0443 main CLR R4

 9 000202 0543 CLR R5

 10 000204 12C3 loop CLRC

 11 000206 54A3 DADD.B #1,R4

 12 000208 34901000 CMP #10h,R4

 13 00020C FB23 JNE loop

 14 00020E 0443 CLR R4

TUTORIAL 4 ASSEMBLER TUTORIALS

T430-1

42

Select the Debug folder in the Project window. Then choose Options…
from the Project menu, and select XLINK in the Category list to display
the linker option pages:

Specify the following XLINK options:

Select OK to set the options you have specified.

Page Option

Output Debug info with terminal I/O
Module-local symbols: Include all

Include In the XCL file name area, select Override default
and specify the first.xcl linker command file. This
is a basic linker command file, designed for
assembler-only projects.

ASSEMBLER TUTORIALS TUTORIAL 4

T430-1

43

To link the file, choose Link from the Project menu. As before, the
progress during linking is shown in the Messages window:

The code will be placed in a file project2.d43.

RUNNING THE PROGRAM
To run the example program using the IAR C-SPY Debugger, select
Debugger from the Project menu.

The following warning message will be displayed in the Report window:

Warning [12]: Exit label missing

This message indicates that C-SPY will not know when execution of the
assembler program has been completed. In a C program, this is handled
automatically by the Exit module where the Exit label specifies that
the program exit has been reached. Since there is no corresponding label
in an assembler program, you should set a breakpoint where you want the
execution of the assembler program to be completed.

In this example, set a breakpoint on the DADD.B #1,R4 instruction within
the loop.

Open the Register window by selecting Register from the Window
menu, or select the Register Window button in the toolbar. Position the
windows conveniently.

TUTORIAL 5 ASSEMBLER TUTORIALS

T430-1

44

Then choose Go from the Execute menu, or click the Go button in the
debug bar. When you repeatedly select Go, you can watch the R4 and R5
registers counting in binary coded decimal.

TUTORIAL 5 This tutorial demonstrates how to create library modules and use the IAR
XLIB Librarian™ to maintain files of modules.

USING LIBRARIES
If you are working on a large project you will soon accumulate a collection
of useful routines that are used by several of your programs. To avoid
having to assemble a routine each time the routine is needed, you can
store such routines as object files, i.e., assembled but not linked.

A collection of routines in a single object file is referred to as a library. It
is recommended that you use library files to create collections of related
routines, such as a device driver.

Use the IAR XLIB Librarian to manipulate libraries. It allows you to:

� Change modules from PROGRAM to LIBRARY type, and vice versa.

� Add or remove modules from a library file.

ASSEMBLER TUTORIALS TUTORIAL 5

T430-1

45

� Change the names of entries.

� List module names, entry names, etc.

THE MAIN.S43 PROGRAM
The following listing shows the main.s43 program. A copy of the
program is provided with the product.

NAME main

PUBLIC main
EXTERN r_shift

ORG 0FFFEh
DW main

RSEG PROM
main MOV #H’ABCD,R4

MOV #4,R5
CALL #r_shift

done_it JMP done_it

END main

This simply uses a routine called r_shift to shift the contents of register
R4 to the right the number of times specified by the contents of register
R5. The EXTERN directive declares r_shift as an external symbol, to be
resolved at link time.

THE LIBRARY ROUTINES
The following two library routines will form a separately assembled
library. It consists of the r_shift routine called by main, and a
corresponding l_shift routine, both of which operate on the contents of
the register variables R4 and R5. The file containing these library
routines is called shifts.s43, and a copy is provided with the product.

MODULE r_shift
PUBLIC r_shift
RSEG PROM

r_shift TST R5
JEQ r_shift2
RRA R4

TUTORIAL 5 ASSEMBLER TUTORIALS

T430-1

46

DEC R5
JNE r_shift

r_shift2 RET
ENDMOD

MODULE l_shift
PUBLIC l_shift
RSEG prom

l_shift TST R5
JEQ l_shift2
RLA R4
DEC R5
JNE l_shift

l_shift2 RET

END

The routines are defined as library modules by the MODULE directive,
which instructs the IAR XLINK Linker™ to include the modules only if
they are called by another module.

The r_shift and l_shift entry addresses are made public to other
modules with a PUBLIC directive.

For detailed information about the MODULE and PUBLIC directives, see the
MSP430 Assembler, Linker, and Librarian Programming Guide.

CREATING A NEW PROJECT
Create a new project called Project3. Add the files main.s43 and
shifts.s43 to the new project.

Then set up the target options to suit the project. Make sure that the
Processor Configuration is set to -v0.

The procedure is described in Creating a new project, page 3.

ASSEMBLING AND LINKING THE SOURCE FILES
To assemble and link the main.s43 and shifts.s43 source files, you
must first specify the linker command file to be used.

ASSEMBLER TUTORIALS TUTORIAL 5

T430-1

47

Open the Options dialog box by selecting Options... from the Project
menu. Select XLINK in the Category list and set the following option:

To assemble and link the main.s43 and the shifts.s43 files , select
Make from the Project menu. Alternatively, select the Make button in
the toolbar.

For more information about the XLINK options see the MSP430
Assembler, Linker, and Librarian Programming Guide.

USING THE IAR XLIB LIBRARIAN
Once you have assembled and debugged modules intended for general
use, like the r_shift and l_shift modules, you can add them to a
library using the IAR XLIB Librarian.

Run the IAR XLIB Librarian by choosing Librarian from the Project
menu. The XLIB window will be displayed:

You can now enter XLIB commands at the * prompt.

Giving XLIB commands
Extract the modules you want from shifts.r43 into a library called
math.r43. To do this enter the command:

FETCH-MODULES

Page Option

Include main.xcl (a basic linker command file, designed for
assembler-only projects)

TUTORIAL 5 ASSEMBLER TUTORIALS

T430-1

48

The IAR XLIB Librarian will prompt you for the following information:

This creates the file math.r43 which contains the code for the r_shift
and l_shift routines.

You can confirm this by typing:

LIST-MODULES

The IAR XLIB Librarian will prompt you for the following information:

You could use the same procedure to add further modules to the math
library at any time.

Finally, leave the librarian by typing:

EXIT

or

QUIT

Then press Enter.

Prompt Response

Source file Type debug\obj\shifts and press Enter.

Destination file Type debug\obj\math and press Enter.

Start module Press Enter to use the default start module, which is
the first in the file.

End module Press Enter to use the default end module, which is
the last in the file.

Prompt Response

Object file Type debug\obj\math and press Enter.

List file Press Enter to display the list file on the screen.

Start module Press Enter to start from the first module.

End module Press Enter to end at the last module.

T430-1

49

ADVANCED TUTORIALS
This chapter describes some of the more advanded features of the IAR
development tools, which are very useful when you work on larger
projects.

� The tutorials that follow both explore the features of C-SPY. In
Tutorial 6 we define complex breakpoints, profile the application,
and display code coverage. Tutorial 7 describes how to debug in
disassembly mode.

� Tutorial 8 describes how to create a project containing both C and
assembly language source files.

Before running these tutorials, you should be familiar with the IAR
Embedded Workbench and the IAR C-SPY Debugger as described in the
chapter IAR Embedded Workbench tutorial.

TUTORIAL 6 In this tutorial we explore the following features of C-SPY:

� Defining complex breakpoints

� Profiling the application

� Displaying code coverage information.

CREATING PROJECT4
In the IAR Embedded Workbench, create a new project called Project4
and add the files tutor.c and common.c to it. Make sure the following
project options are set as follows:

Category Page Option

General Target Make sure that the Processor Configuration
is set to -v0 (default).

ICC430 Code Generation Set the Optimization to None.

Debug Select Generate debug information (default).

List Select List file.

XLINK Output Select Debug info with terminal I/O
(default).

TUTORIAL 6 ADVANCED TUTORIALS

T430-1

50

Click OK to set the options.

Select Make from the Project menu, or select the Make button in the
toolbar to compile and link the files. This creates the project4.d43 file.

Start C-SPY to run the project4.d43 program.

DEFINING COMPLEX BREAKPOINTS
You can define complex breakpoint conditions in C-SPY, allowing you to
detect when your program has reached a particular state of interest.

The file project4.d43 should now be open in C-SPY. Execute one step.
The current position should be the call to the init_fib function.

Then select Step into to move to the init_fib function. Set a breakpoint
at the statement i++.

Now we will modify the breakpoint you have set so that C-SPY detects
when the value of i exceeds 8.

Choose Edit Breakpoints… from the Control menu to display the
Breakpoints dialog box. Then select the breakpoint in the Breakpoints
list to display information about the breakpoint you have defined:

Currently the breakpoint is triggered when a fetch occurs from the
location corresponding to the C statement.

ADVANCED TUTORIALS TUTORIAL 6

T430-1

51

Add a condition to the breakpoint using the following procedure:

Enter i>8 in the Condition box and, if necessary, select Condition True
from the Condition Type drop-down list.

Then choose Modify to modify the breakpoint with the settings you have
defined:

Finally, choose Close to close the Breakpoints dialog box.

Open the Watch window and add the variable i. The procedure is
described in Watching variables, page 17.

Position the Source, Watch, and Report windows conveniently.

TUTORIAL 6 ADVANCED TUTORIALS

T430-1

52

EXECUTING UNTIL A CONDITION IS TRUE
Now execute the program until the breakpoint condition is true by
choosing Go from the Execute menu, or clicking the Go button in the
toolbar. The program will stop when it reaches a breakpoint and the value
of i exceeds 8:

EXECUTING UP TO THE CURSOR
A convenient way of executing up to a particular statement in the
program is to use the Go to Cursor command.

First remove the existing breakpoint. Use the Edit Breakpoints...
command from the Control menu or from the pop-up menu to open the
Breakpoints dialog box. Select the breakpoint and click on the Clear
button.

Then remove the variable i from the Watch window. Select the variable
in the Watch window and press the Delete key. Instead add root to watch
the array during execution.

Then select the file tutor.c in the Source file box. Now you can choose
the do_foreground_process function in the Function box.

Position the cursor in the Source window in the statement:

next_counter();

ADVANCED TUTORIALS TUTORIAL 6

T430-1

53

Select Go to Cursor from the Execute menu, or click the Go to Cursor
button in the toolbar. The program will execute up to the statement at the
cursor position. Expand the contents of the root array to view the result:

DISPLAYING FUNCTION CALLS
The program is now executing statements inside a function called from
main. You can display the sequence of calls to the current position in the
Calls window.

Choose Calls from the Window menu to open the Calls window and
display the function calls. Alternatively, click the Calls Window button
in the toolbar.

In each case the function name is preceded by the module name.

You can now close both the Calls window and the Watch window.

TUTORIAL 6 ADVANCED TUTORIALS

T430-1

54

DISPLAYING CODE COVERAGE INFORMATION
The code coverage tool can be used to identify statements not executed
and functions not called in your program.

Reset the program by selecting Reset from the Execute menu or by
clicking the Reset button in the toolbar. Display the current code
coverage status by selecting Code Coverage from the Window menu.
The information shows that no functions have been called.

Select the Auto Refresh On/Off button in the toolbar of the Code
Coverage window. The information displayed in the Code Coverage
window will automatically be updated.

Execute one step, and then select Step Into to step into the init_fib
function. Execute a few more steps and look at the code coverage status
once more. At this point a few statements are reported as not executed:

ADVANCED TUTORIALS TUTORIAL 6

T430-1

55

PROFILING THE APPLICATION
The profiling tool provides you with timing information on your
application.

Reset the program by selecting Reset from the Execute menu or by
clicking the Reset button in the toolbar. Open a Profiling window by
choosing Profiling from the Window menu.

Start the profiling tool by selecting Profiling from the Control menu or
by clicking the Profiling On/Off button on the Profiling toolbar.

Clear all breakpoints by selecting Clear All in the Breakpoints dialog
box, which is displayed when you select Edit Breakpoints... from the
Control menu. Run the program by pressing the Go button in the toolbar.

When the program has reached the exit point, you can study the profiling
information shown in the Profiling window:

The Profiling window contains the following information:

� Count is the number of times each function has been called.

� Flat Time is the total time spent in each function in cycles or as a
percentage of the total number of cycles shown in the Profiling
toolbar.

� Accumulated Time is time spent in each function including all
function calls made from that function in cycles or as a percentage of
the total number of cycles.

From the Profiling toolbar it is possible to display the profiling
information graphically, to save the information to a file, or to start a new
measurement.

TUTORIAL 7 ADVANCED TUTORIALS

T430-1

56

TUTORIAL 7 Although debugging with C-SPY is usually quicker and more
straightforward in source mode, some demanding applications can only
be debugged in assembler mode. C-SPY lets you switch freely between the
two.

First reset the program by clicking the Reset button in the toolbar. Then
change the mode by choosing Toggle Source/Disassembly from the
View menu or click the Toggle Source/Disassembly button in the
toolbar.

You will see the assembler code corresponding to the current C statement.
Stepping is now one assembler instruction at a time. Step a few times.

When you are debugging in disassembly mode every assembler
instruction that has been executed since the last reset is marked with an
* (asterisk).

Note: There may be a delay before this information is displayed, due to the
way the Source window is updated.

MONITORING MEMORY
The Memory window allows you to monitor selected areas of memory. In
the following example we will monitor the memory corresponding to the
variable root.

ADVANCED TUTORIALS TUTORIAL 7

T430-1

57

Choose Memory from the Window menu to open the Memory window
or click the Memory Window button in the toolbar. Position the Source
and Memory windows conveniently on the screen.

Change back to source mode by choosing Toggle Source/Disassembly
or clicking the Toggle Source/Disassembly button in the toolbar.

Select root in the file common.c. Then drag it from the Source window
and drop it into the Memory window. The Memory window will show
the contents of memory corresponding to root:

Since we are displaying word data, it is convenient to display the memory
contents as words. Make sure the 16 button is selected in the Memory
window toolbar:

Notice that the 10 words have been initialized by the init_fib function
of the C program.

TUTORIAL 7 ADVANCED TUTORIALS

T430-1

58

CHANGING MEMORY
You can change the memory contents by editing the values in the Memory
window. Double-click the line in memory which you want to edit. A
dialog box is displayed.

You can now edit the corresponding values directly in the memory.

For example, if you want to write the number 255 in the third position in
number in the root array, select the value 0002 at address 0x204 in the
Memory window and change it to 00FF in the 16-Bit Edit dialog box:

Then choose OK to display the new values in the Memory window:

Before proceeding, close the Memory window and switch to disassembly
mode.

ADVANCED TUTORIALS TUTORIAL 7

T430-1

59

MONITORING REGISTERS
The Register window allows you to monitor the contents of the processor
registers and modify their contents.

Open the Register window by choosing Register from the Window
menu. Alternatively, click the Register Window button in the toolbar.

Select Step from the Execute menu, or click the Step button in the
toolbar, to execute the next instructions, and watch how the values
change in the Register window.

Then close the Register window.

CHANGING ASSEMBLER VALUES
C-SPY allows you to temporarily change and reassemble individual
assembler statements during debugging.

Select disassembly mode and step towards the end of the program.
Position the cursor on a NOP instruction and double-click on it. The
Assembler dialog box is displayed:

Change the Assembler Input field from NOP to RET and select Assemble
to temporarily change the value of the statement. Notice how it changes
also in the Source window.

TUTORIAL 8 ADVANCED TUTORIALS

T430-1

60

TUTORIAL 8 CREATING A COMBINED C COMPILER AND
ASSEMBLER PROJECT
In large projects it may be convenient to use both C-written and
assembly-written source files. In this tutorial we will demonstrate how
they can be combined by substituting the file common.c with the
assembler file common.s43 and compiling the project.

Return to or open Project4 in the IAR Embedded Workbench. The
project should contain the files tutor.c and common.c.

Now you should create the assembler file common.s43. In the Project
window, select the file common.c. Then select Options... from the
Project menu. You will notice that only the ICC430 and XLINK
categories are available.

In the ICC430 category, select Override inherited settings and set the
following options:

Then click OK and return to the Project window.

Page Option

List Deselect List file.

Select Assembly output file.

ADVANCED TUTORIALS TUTORIAL 8

T430-1

61

Compile each of the files. To see how the C code is represented in
assembly language, open the file common.s43 that was created from the
file common.c.

Now modify Project4 by removing the file common.c and adding the file
common.s43 instead. Then select Make from the Project menu to relink
Project4.

Start C-SPY to run the project4.d43 program and see that it behaves
like in the previous tutorials.

TUTORIAL 8 ADVANCED TUTORIALS

T430-1

62

INDEX

T430-1

63

A
Access (user-defined macro) 31
Accumulated Time (profiling) 55
applications

profiling, example 55
assembler list file 40
assembler listing format 41
assembler options, setting 39
assembler tutorials 37
assembling a file, example 40
assumptions iv

B
breakpoints

complex 50
example 27

conditional, example 51
defining, example 18, 49
inspecting details, example 35
removing, example 20

build tree (viewing) 14

C
Calls window, example 53
Calls (Window menu) 53
code coverage, example 54
Common Sources (group) 8
compiler list file, example 10
compiler tutorials 23
compiling a file or project, example 9, 24
complex breakpoints 50
conditional breakpoints, example 51
conventions, typographical iv
Count, in Profiling window 55

CRC 40
cross reference section, in map files 13
CSTARTUP module 15
current position

in Embedded Workbench Source
window, example 15

C-SPY
displaying function calls, example 53
exiting from 21
generating interrupts, example 27
resetting 31

C-SPY macros
execUserExit(), example 32
execUserReset(), example 31
execUserSetup(), example 29
interrupt simulation, example 27
using 27–28

C-SPY system macros
__orderInterrupt, example 30
__setBreak, example 30

C-SPY windows
Calls, example 53
Memory, example 57
Register, example 59
Source, example 15
Watch, example 17

D
debugging projects

in disassembly mode, example 56
disassembly mode debugging, example 56

E
Edit Breakpoints... (Control menu), example 50
Embedded Workbench, tutorial 3

INDEX

INDEX

T430-1

64

examples
adding files to a project 7
assembling a file 39–40
changing assembler statements in C-SPY 59
compiler list files 10
compiling files 9
creating a project 3
creating virtual registers 25
defining complex breakpoints 49–50
defining interrupts 27
disassembly mode debugging 56
displaying code coverage 54
displaying function calls in C-SPY 53
displaying terminal I/O 20
editing the memory contents in C-SPY 58
executing until a condition is true 52
executing up to a breakpoint 20
executing up to the cursor 52
linking a compiler program 12
linking an assembler program 41
map files 13
monitoring memory 56
monitoring registers 59
resetting the system 31
running a compiler program in C-SPY 14
running an assembler program in C-SPY 43
setting breakpoints 18
simulating incoming values 30
simulating interrupts 27, 30
specifying compiler options 8
specifying target options 4
stepping in C-SPY 15
using C-SPY macros 27–28
using libraries 44
using the Embedded Workbench 3
using the profiling tool 55
using XLIB 47
watching variables 17

execUserExit() (setup macro), example 32
execUserReset() (setup macro), example 31
execUserSetup() (setup macro), example 29
Exit label missing (C-SPY warning) 43
Exit (File menu), C-SPY 21
EXIT (XLIB command) 48
extended keywords

monitor 27
extensions, language 23

F
FETCH-MODULES (XLIB command) 47
files

adding to a project 7
assembling, example 39
compiling, example 9

first.s43 (assembler tutorial file) 37
Flat Time (profiling) 55
formats

assembler list file 40
compiler list file 10

function calls
displaying in C-SPY 53
See also Calls window

G
generating interrupts 30
Go (button), example 52
Go (Execute menu), example 52
guarding I/O calls 27

H
header, of compiler list file 10

INDEX

T430-1

65

I
interrupts

example 27
generating 30
inspecting 35
viewing 35

interrupt-driven I/O, example 27
I/O

guarding calls to 27
interrupt-driven 27
polled 23

L
language extensions, example 23
libraries, using 44
library modules

creating 44
example 44

library routines, example 45
linking

a program 41
tutor.c 12

list files, assembler 40
LIST-MODULES (XLIB command) 48

M
machine-code programs. See assembler tutorials
main.s43 45
map files

example 13
viewing 13

memory
editing, example 58
location, example 26

monitoring, example 56
Memory window, example 57
Memory... (Window menu) 57
module map, in map files 13
MODULE (assembler directive) 46
modules

changing type 44
maintaining 44

monitor (extended keyword) 27
Multi Step... (Execute menu)

examples 16, 18

N
New Project (dialog box) 3

O
object files 44
options, target 4
output

displaying I/O 20

P
peripherals, using with compiler 23
polled I/O 23
Processor Configuration (target option) 5, 37
profiling, example 55
program

adding to a project 38
assembling 40
linking 41
running 43

program modules, loading in XLINK 44
Project window

example 4

INDEX

T430-1

66

projects
adding files to, example 7
assembling, example 39
compiling, example 9
creating 3
creating, example 46

PUBLIC (assembler directive) 46

Q
QUIT (XLIB command) 48

R
Register window, example 59
registers, virtual 23
removing breakpoints 20
Reset (Execute menu) 21
routines 44
Run to Cursor (Execute menu) 53
running programs, examples 14, 43

S
segments, section in map files 14
setting

breakpoints 18
watchpoints 17

shifts.s43 (assembler tutorial file) 45
simulation, of incoming values 30
single stepping, example 16
source files, adding to a project 7, 38
Source window, example 15
Step (Execute menu) 15
system, resetting 31

T
Target CPU Family 4
Terminal I/O window, example 20
time

accumulated, in Profiling window 55
flat, in Profiling window 55

Toggle Breakpoint (Control menu) 19
Toggle C/Disassembly (View menu) 56
tutorials

assembler 37
compiler 23
Embedded Workbench 3
See also examples

tutor.c (compiler tutorial file) 5
tutor2.c (compiler tutorial file) 23
Tutor3Setup() (user-defined macro) 29
Tutor3Shutdown() (user-defined macro) 32
tutor3.c (compiler tutorial file) 27
tutor3.mac (compiler tutorial file) 28

V
variables

watching 17
viewing

breakpoints 35
build tree 14
interrupts 35
map files 13
variables 17

virtual registers, creating 23, 25

W
Watch window, examples 17
watchpoints, setting 17

INDEX

T430-1

67

X
XLIB

exiting from 48
using 47

XLIB commands 47
EXIT 48
FETCH-MODULES 47
LIST-MODULES 48
QUIT 48

Symbols
#pragma directive 23
* (asterisk) 56
__orderInterrupt (C-SPY system macro) 30
__setBreak (C-SPY system macro) 30–31

INDEX

T430-1

68

	Preface
	Copyright notice
	Disclaimer
	Trademarks
	Welcome
	About this guide
	Assumptions and conventions
	Assumptions
	Conventions

	Contents
	Tutorials
	IAR Embedded Workbench tutorial
	Tutorial 1
	Creating a new project
	The source files
	The tutor.c program

	Adding files to the project
	Setting compiler options
	Compiling the tutor.c and common.c files
	Viewing the list file
	Linking the tutor.c program
	Viewing the map file
	Viewing the build tree

	Running the program
	Watching variables
	Setting breakpoints
	Executing up to a breakpoint
	Continuing execution
	Exiting from C-SPY

	Compiler tutorials
	Tutorial 2
	The tutor2.c serial program
	Compiling and linking the tutor2.c serial program
	Running the tutor2.c serial program
	Defining virtual registers

	Tutorial 3
	The tutor3.c interrupt program
	The C-SPY tutor3.mac macro file
	Initializing the system
	Generating interrupts
	Using breakpoints to simulate incoming values
	Resetting the system
	Exiting the system

	Compiling and linking the tutor3.c program
	Running the tutor3.c interrupt program

	Assembler tutorials
	Tutorial 4
	The first.s43 program
	Assembling the program
	Viewing the first.lst list file
	Linking the program
	Running the program

	Tutorial 5
	Using libraries
	The main.s43 program
	The library routines
	Creating a new project
	Assembling and linking the source files
	Using the IAR XLIB librarian
	Giving XLIB commands

	Advanced tutorials
	Tutorial 6
	Creating project4
	Defining complex breakpoints
	Executing until a condition is true
	Executing up to the cursor
	Displaying function calls
	Displaying code coverage information
	Profiling the application

	Tutorial 7
	Monitoring memory
	Changing memory
	Monitoring registers
	Changing assembler values

	Tutorial 8
	Creating a combined C compiler and assembler project

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X
	Symbols

