Advanced Analog Integrated Circuits

Matching

Bernhard E. Boser
University of California, Berkeley
boser@eecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
Issue

- In SPICE, two transistors with equal dimensions and terminal voltages (and temperature) carry the same current

- In Si, the current are (slightly) mismatched
 - Why?
 - How much mismatch?
 - Fix?
 - Verification?
Origins of Mismatch
Wafer to Wafer Variations

Wafer 1
- all NMOS fast
- all PMOS nominal
- all C nominal
- all R fast

Wafer 2
- all NMOS slow
- all PMOS slow
- all C fast
- all R nominal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Slow</th>
<th>Nominal</th>
<th>Fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TH}</td>
<td>0.5V</td>
<td>0.4V</td>
<td>0.3V</td>
</tr>
<tr>
<td>μC_{ox} (NMOS)</td>
<td>200 μA/V2</td>
<td>250 μA/V2</td>
<td>300 μA/V2</td>
</tr>
<tr>
<td>μC_{ox} (PMOS)</td>
<td>100 μA/V2</td>
<td>130 μA/V2</td>
<td>160 μA/V2</td>
</tr>
<tr>
<td>C_{MIM}</td>
<td>1.2 fF/µm2</td>
<td>1 fF/µm2</td>
<td>0.8 fF/µm2</td>
</tr>
<tr>
<td>R_{poly}</td>
<td>80 Ω/□</td>
<td>70 Ω/□</td>
<td>60 Ω/□</td>
</tr>
<tr>
<td>R_{nwell}</td>
<td>1.3 kΩ/□</td>
<td>1 kΩ/□</td>
<td>0.7 kΩ/□</td>
</tr>
</tbody>
</table>

- Verify performance for all combination (with simulator)
- Also low/high supply and temperature
Advanced Analog Integrated Circuits

Random Variations

Bernhard E. Boser
University of California, Berkeley
boser@eecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
Random Variations

Parameters for typical 180nm CMOS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{vt} (MOS)</td>
<td>5 mV-μm</td>
</tr>
<tr>
<td>A_{β} (MOS)</td>
<td>1 %--μm</td>
</tr>
<tr>
<td>$A_{\Delta I_s/I_s}$ (BJT)</td>
<td>2 %--μm</td>
</tr>
<tr>
<td>$A_{\Delta \beta/\beta}$ (BJT)</td>
<td>4 %--μm</td>
</tr>
<tr>
<td>$A_{\Delta C/C}$ (MIM capacitor)</td>
<td>1 %--μm</td>
</tr>
<tr>
<td>$A_{\Delta R/R}$ (Poly resistor)</td>
<td>3 %--μm</td>
</tr>
</tbody>
</table>
A$_{\text{vt}}$ for 180nm CMOS

- Good match between heuristic model and experimental data, except
 - minimum channel length (actual length is smaller than drawn)
 - very long channel device

A_{VT} versus Gate Oxide Thickness

- A_{VT} increases $\sim 1 \text{ mV} \times \mu\text{m}$ for every nm of gate insulator thickness
 - for well-engineered process
- But: circuits get smaller …
- A_{VT} scaling design: e.g.
 - Outlier for 0.6 μm PMOS is result of compensating implant, leading to high variability
 - beyond 0.6 μm node dedicated well implant is used

Advanced Analog Integrated Circuits

Yield

Bernhard E. Boser
University of California, Berkeley
boser@eecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
Random Mismatch - Example

What is the mismatch between two MIM capacitors with \(W = L = 20\mu m \)?

\[
\sigma_{\Delta C/C} = \frac{A_{\Delta C/C}}{\sqrt{20\mu m \times 20\mu m}} = \frac{1\% \times \mu m}{20\mu m} = 0.05\%
\]

\(\rightarrow \) 68.2\% of all devices fabricated match to ±0.05\%.

Yield

- Fraction of devices that meet specification

<table>
<thead>
<tr>
<th>Interval</th>
<th>Yield</th>
<th>Fraction Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1σ</td>
<td>68.3%</td>
<td>1/3</td>
</tr>
<tr>
<td>2σ</td>
<td>95.4%</td>
<td>1/22</td>
</tr>
<tr>
<td>3σ</td>
<td>99.7%</td>
<td>1/370</td>
</tr>
<tr>
<td>4σ</td>
<td>99.99%</td>
<td>1/16,000</td>
</tr>
<tr>
<td>5σ</td>
<td>99.999%</td>
<td>1/1,700,000</td>
</tr>
<tr>
<td>6σ</td>
<td>99.999 999 8%</td>
<td>1/507,000,000</td>
</tr>
</tbody>
</table>

- Large customers tolerate less than 1ppm failures
 - 6σ design
 - Testing, binning
 - Capacitor example: 1σ → ±0.05%, 6σ → ±0.3%,
Advanced Analog Integrated Circuits

Mismatch in Mirrors and Differential Pairs

Bernhard E. Boser
University of California, Berkeley
bos@eeecs.berkeley.edu

Copyright © 2016 by Bernhard Boser
Mismatch in Current Mirror

\[V_1 \]
\[I_1 \]
\[M_1 \]
\[\beta \]

\[\Delta V_{TH} \]

\[V_2 = V_1 \]
\[I_2 \]
\[M_2 \]
\[\beta + \Delta \beta \]
Differential Pair

\[V_1 \]
\[I_1 \]
\[V_{i1} \]
\[M_1 \]
\[\beta \]

\[V_2 = V_1 \]
\[I_2 \]
\[V_{i2} \]
\[M_2 \]
\[\beta + \Delta \beta \]

\[I_{ss} \]
Verification

1. PVT
 - Process, voltage, temperature
 - Perform verification for all combinations on design and extracted netlist

2. Random variations
 - Monte-Carlo analysis
Technology Trend

- slow/fast spread decreases
 - better process control
- random variations increase
 - smaller devices

V_{TH} spread for 90nm NMOS and PMOS:

- random variations comparable to slow/fast spread