Due in the "EE 105 box" near 125 Cory Hall by 5pm on Friday 11/30/2012.
Read Sections 10.4-7 in B. Razavi: Fundamentals of Microelectronics

1. Problem 9.4 in B. Razavi: Fundamentals of Microelectronics
2. Problem 9.16 in B. Razavi: Fundamentals of Microelectronics
3. Problem 9.12 in B. Razavi: Fundamentals of Microelectronics
4. Problem 9.67 in B. Razavi: Fundamentals of Microelectronics
5. Problem 10.53 in B. Razavi: Fundamentals of Microelectronics
6. Do the Excercise after Example 10.29 in B. Razavi: Fundamentals of Microelectronics
7. Problem 10.73 in B. Razavi: Fundamentals of Microelectronics
8. Problem 10.81 in B. Razavi: Fundamentals of Microelectronics
9. Do the Excercise after Example 10.27 in B. Razavi: Fundamentals of Microelectronics
10. Do the Excercise after Example 10.28 in B. Razavi: Fundamentals of Microelectronics
11. Problem 10.91 in B. Razavi: Fundamentals of Microelectronics
12. Problem 10.53 in B. Razavi: Fundamentals of Microelectronics
13. Problem 10.57 in B. Razavi: Fundamentals of Microelectronics
14. Problem 10.59 in B. Razavi: Fundamentals of Microelectronics

Final:

- Open-book, two 8.5 by 11 inch page of handwritten notes (two sided)
- Write all your work and answers on the exam sheet
- Clearly mark results with a box around them
- Show your work (large and small-signal circuit diagrams, analysis/design equations)
- Cross out incorrect answers. If you present two or more inconsistent answers we invariably grade the wrong one.
- Notation: $V_{x}=V_{X}+v_{x}$, where V_{X} is the large signal bias and v_{x} is the small signal value.

Unless otherwise specified, use the following parameters:
$\begin{array}{ll}\text { Device } & \text { Parameter values } \\ \text { BJT } & I_{s}=1 \mathrm{fA}, \beta=100, \text { and } V_{A}=100 \mathrm{~V} \\ \text { N } / \text { PMOS } & \left|V_{T H}\right|=400 \mathrm{mV}, C_{o x}=10 \mathrm{fF} / \mu \mathrm{m}^{2}, C_{o l}=0.2 \mathrm{fF} / \mu \mathrm{m}, \lambda=0.02 \mathrm{~V}^{-1}, \gamma=0 \mathrm{~V}, L_{\min }=180 \mathrm{~nm} \\ \text { NMOS } & \mu_{n}=300 \mathrm{~cm}^{2} / \mathrm{Vs} \\ \text { PMOS } & \mu_{p}=150 \mathrm{~cm}^{2} / \mathrm{Vs} \\ - & V_{t}=25 \mathrm{mV}\end{array}$

