Due in the "EE 105 box" near 125 Cory Hall by 5pm on Friday 11/2/2012.

Read Section 11.2 in B. Razavi: Fundamentals of Microelectronics

Use the following parameters in all problems, unless otherwise specified (problems from B. Razavi: Fundamentals of Microelectronics use the parameters specified in B. Razavi: Fundamentals of Microelectronics):

Device	Parameter values
BJT	$I_s = 1 \text{fA}, \beta = 100, \text{and} V_A = 100 \text{V}$
NMOS	$ V_{TH} = 400 \text{ mV}, \mu_n C_{ox} = 200 \mu \text{A}/\text{V}^2, \lambda = 0.02 \text{V}^{-1}, \gamma = 0 \text{V}.$
PMOS	$ V_{TH} = 400 \text{ mV}, \mu_p C_{ox} = 100 \mu\text{A}/\text{V}^2, \lambda = 0.02 \text{V}^{-1}, \gamma = 0 \text{V}.$

Unless otherwise specified, assume room temperature and $V_t = 25 \text{ mV}$.

- 1. The MOS channel resiststance depends on the region of operation of the device. In Midterm 2, several of you were confused about this (indicated by "blindly ?" applying the λI_D equation). The objective of this problem is to shed light on this.
 - a) Plot (using an appropriate program) I_D versus $V_{DS} = 0 \dots 5 \text{ V}$ for an NMOS transistor with $V_{GS} = 3 \text{ V}$. For which value of V_{DS} does the transistor enter saturation? In what region of operation is it for smaller values of V_{DS} ?
 - b) Add the I/V characteristics of $1 \text{ k}\Omega$ and $100 \text{ k}\Omega$ resistors to the plot from part (a).
 - c) Derive analytical expressions for the small-sigal transistor output resistance r_0 for $V_{DS} = 0, 2$, and 4 V.
 - d) Calculate the small-sigal transistor output resistance r_o for $V_{DS} = 0, 2$, and 5 V and add them to the plot from part (a). Verify that the slopes of the I/V characteristics of the different r_o 's are tangentiential to the transistor I/V characteristics at their respective values of V_{DS} .
- 2. Analyze the amplifer shown below for $V_{dd} = 3.3 \text{ V}$, $V_O = V_{dd}/2$, $W_1 = 5 \,\mu\text{m}$ and $W_2 = 8 \,\mu\text{m}$ and $L_1 = L_2 = 500 \,\text{nm}$. M_2 is biased in saturation.
 - a) What is the region of operation of M_1 ?
 - b) Draw the small-signal model and calculate the values of all small-signal parameters. Beware: $|V_{DS1}| \ll |2(V_{GS1} V_{TH})|$.
 - c) Derive an algebraic expression for the small-signal voltage gain $a_v = v_o/v_i$. You may use the shorthand $r_x \parallel r_y$.
 - d) Calculate the value of a_v .

3. Design a circuit such that $v_0 = r_x i_s$ with $r_x = 10 \text{ k}\Omega \pm 2\%$ using a single NPN transistor ($V_A = 0 \text{ V}$) and as many resistors and (ideal) bias sources (current or voltage) as you like (fewer is better and helps avoid mistakes). The value of R_s varies in the range $1 \dots 10 \text{ M}\Omega$. The source i_s is a reverse biased diode and requires V_s in the range $2 \text{ V} \le V_s \le 3 \text{ V}$ to work properly. Stay close to the minimum power dissipation (not more than 2x).

Use the following sequence (you may need to iterate):

- a) To familiarize ourselves with the problem, let's set $R_s \to \infty$ and not worry about the value of V_s or sign of v_o (this part only!). Design a circuit such that $v_o = r_x i_s$. Note: you won't need a transistor!
- b) Now let's add the finite R_s . Does our first-cut design still meet the specification? Why not?
- c) Now comes the "crux" in design: we need an idea! I'll make a suggestion: could we solve our problem with an amplifier? How insightful! What would be the "ideal" input resistance *R_i* (zero or infinity) of the amplifier?
- d) Which amplifier topologies (CE, CB, CC) ideally (i.e. $g_m \to \infty$, $r_\pi \to \infty$, and $r_o \to \infty$) meet the requirement from part (a)?
- e) Consider each configuration (CE, CB, CC), still assuming ideal characteristics (g_m → ∞, r_π → ∞, and r_o → ∞). For each explain briefly why it's a candidate or not. Note: review your notes and get help in office hours if you feel that even with idealizing assumptions no amplifier configuration addresses the problem of finite R_s.
- f) Draw a prototype large signal model including all biasing elements. You may need to iterate, e.g. modify or add biasing elements during the design process.
- g) Draw the small-signal diagram and determine the small-signal parameters required to meet the specifications.
- h) Calculate the large signal parameters including the values of all bias sources.
- i) Verify with SPICE that your circuit meets the specifications. Turn in a printout of schematic or netlist (from SPICE) and a graph showing V_o versus I_s for $R_s = 1 M\Omega$, $R_s = 10 M\Omega$ and $V_s = 2 V$, $V_s = 3 V$ (a total of 4 traces!). Add the I/V characteristic of a 10 k Ω resistor to your SPICE output (why?). For each trace in your SPICE output, mark the region of I_s for which meets the specification.

- 4. Do Problem 7.57 in B. Razavi: Fundamentals of Microelectronics. Remove R_G from the circuit and replace C_1 with a bias voltage source. Replace C_2 with a short circuit. Remember: use parameters specified in B. Razavi: Fundamentals of Microelectronics, not the ones listed at the head of the assignment!
- 5. Do the Exercise after Example 11.12 in B. Razavi: Fundamentals of Microelectronics.
- 6. Do the Exercise after Example 11.13 in B. Razavi: Fundamentals of Microelectronics.
- 7. Do the Exercise after Example 11.14 in B. Razavi: Fundamentals of Microelectronics.

- 8. Do Problem 11.9 in B. Razavi: Fundamentals of Microelectronics.
- 9. Do Problem 11.11 in B. Razavi: Fundamentals of Microelectronics.