
CS294-204 Phase Transitions (Fall 2021)
Homework #1
Due Fr. 9/10

1. Poisson, Geometric, and Binomial Birth process [7 Points]

1. Calculate the generating function G(η) for a Poisson random variable Poi(c); write
out the implicit equation for the extinction probability η of a birth process with
offspring distribution Poi(c) to show that the survival probability, θ = 1− η obeys
the equation θ + e−cθ = 1 [2 Points].

2. Calculate the generating function G(η) of a geometric random variable X with
P(X = k) = qk(1− q), k ≥ 0. Calculate the expectation, c = E[X], and determine
the threshold for the survival of a birth process with offspring distribution X. Solve
the implicit equation for the survival probability θ = 1− η and express it in terms
of c [2 Points].

3. Calculate the generating function Gn,p(x) for Bin(n, p), and express it in the form
f(x, p)n. Show that if n → ∞ and np → c ∈ (0,∞), Gn,p(x) converges to the
generating function of a Poisson random variable with mean c. Prove that the
convergence is uniform for x ∈ [0, 1], and use this to conclude that the extinction
probability of a branching process with offspring distribution Bin(n, p) converges
to that of a branching process with offspring distribution Poi(c) [3 Points].

2. Concentration for General Random Variables [4 Points]

Let X be a random variable with E[X] = c and let X1, X2, . . . be i.i.d. with the same
distribution as X. In this exercise we will show that

Pr(

k∑
i=1

Xi ≥ kx) ≤ e−kI(x) if x > c; (1)

Pr(

k∑
i=1

Xi ≤ kx) ≤ e−kI(x) if x < c, (2)

where I(x) is the “rate function”

I(x) = sup
t∈R

(tx− logE[etX ]). (3)

1. Use the standard trick that for any random variable Z and any t > 0, Pr(Z ≥ z) =
Pr(etZ ≥ etz) to show that for x > c and t > 0

Pr(

k∑
i=1

Xi ≥ kx) ≤ e−kφt(x)

where φt(x) = tx− logE[etX ] [1 Point].

2. Use Jensen’s inequality to prove that φt(x) ≤ (x − c)t, and use this to conclude
that the supremum in (3) can be taken over t such that (x − c)t ≥ 0 (Hint: use
that φt(x) = 0 if t = 0.) Infer the bound (1) [2 Points].

3. Consider the variables Yi = −Xi to prove (2) [1 Point].
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3. Concentration for Poisson and Binomial Random Variables [7 Points]

1. Calculate φt(x) = tx − logE[etX ] for a Poisson random variable X ∼ Poi(c).
Optimize over t to show that

I(x) = c− x+ x ln
x

c
.

Prove that I(x) =
∫ x
c
dy
∫ y
c

1
zdz if x > c. Use this, and the analogous formula for

x < c to show that I(x) ≥ (x−c)2
2max{x,c} . Conclude that

Pr
( k∑
i=1

Xi ≥ kx
)
≤ e−k

(x−c)2

2x if x > c

Pr
( k∑
i=1

Xi ≤ kx
)
≤ e−k

(c−x)2

2c if x < c.

(4)

[2 Points]

2. Let Be(p) be the Bernoulli distribution. Optimize over t in the expression for I(x)
and prove that for X ∼ Be(p) and x ∈ (0, 1), I(x) is the relative entropy (also
called Kullback–Leibler divergence)

Ip(x) = x log

(
x

p

)
+ (1− x) log

(
1− x
1− p

)
.

Taylor expand Ip(x) to second order around x = p and bound the second derivative

from below by min{1/x, 1/p} to show that Ip(x) ≥ (x− p)2

2 max{x, p}
. [3 Points]

3. Consider now k i.i.d. random variables Xi ∼ Bin(n, p) with np = c. Use the last
result to show that the bounds (4) hold for Xi ∼ Bin(n, p) with np = c. Hint: As
an intermediate step, prove that the distribution of Bin(n, p) is the same as the
sum of n i.i.d. Bernoulli random variables and use this to express I(x) as nIp(x/n).
[2 Points]

4. Branching process with arbitrary off-spring distribution [4 Bonus Points]

In class, we showed that for a Branching Process with off-spring X ∼ Poi(c) with
c > 1, there exists some constant D > 0 such that

Pr(k ≤ |TX | <∞) ≤ e−kD

1− e−D
, (5)

i.e., we proved that a Poisson branching process above criticality that dies out is not
very likely to reach a large size. Here you will prove this result for an arbitrary off-spring
distributions, as long as E[X] > 1.

1. Let X be a random variable taking values in R+ = [0,∞) with 0 < E[X] < ∞.
Prove that for x < E[X], the rate function I(x) is strictly positive. Hint: Use that
φ0(x) = 0 and consider the derivative of φt(x) with respect to t - but be careful,
E[etX ] may not be defined for all t ∈ R.

2. Show the same statement in the case where E[X] =∞.

3. Apply this result for x = 1 and c = E[X] > 1, and proceed as in class to prove (5)
for general X. Express D in terms of the rate function I(·).
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