CS294-204 Phase Transitions (Fall 2021) Homework \#1 Due Fr. 9/10

1. Poisson, Geometric, and Binomial Birth process [7 Points]

1. Calculate the generating function $G(\eta)$ for a Poisson random variable $\operatorname{Poi}(c)$; write out the implicit equation for the extinction probability η of a birth process with offspring distribution $\operatorname{Poi}(c)$ to show that the survival probability, $\theta=1-\eta$ obeys the equation $\theta+e^{-c \theta}=1$ [2 Points].
2. Calculate the generating function $G(\eta)$ of a geometric random variable X with $\mathbb{P}(X=k)=q^{k}(1-q), k \geq 0$. Calculate the expectation, $c=\mathbb{E}[X]$, and determine the threshold for the survival of a birth process with offspring distribution X. Solve the implicit equation for the survival probability $\theta=1-\eta$ and express it in terms of c [2 Points].
3. Calculate the generating function $G_{n, p}(x)$ for $\operatorname{Bin}(n, p)$, and express it in the form $f(x, p)^{n}$. Show that if $n \rightarrow \infty$ and $n p \rightarrow c \in(0, \infty), G_{n, p}(x)$ converges to the generating function of a Poisson random variable with mean c. Prove that the convergence is uniform for $x \in[0,1]$, and use this to conclude that the extinction probability of a branching process with offspring distribution $\operatorname{Bin}(n, p)$ converges to that of a branching process with offspring distribution Poi(c) [3 Points].

2. Concentration for General Random Variables [4 Points]

Let X be a random variable with $\mathbb{E}[X]=c$ and let X_{1}, X_{2}, \ldots be i.i.d. with the same distribution as X. In this exercise we will show that

$$
\begin{align*}
& \operatorname{Pr}\left(\sum_{i=1}^{k} X_{i} \geq k x\right) \leq e^{-k I(x)} \quad \text { if } x>c \tag{1}\\
& \operatorname{Pr}\left(\sum_{i=1}^{k} X_{i} \leq k x\right) \leq e^{-k I(x)} \quad \text { if } x<c \tag{2}
\end{align*}
$$

where $I(x)$ is the "rate function"

$$
\begin{equation*}
I(x)=\sup _{t \in \mathbb{R}}\left(t x-\log \mathbb{E}\left[e^{t X}\right]\right) \tag{3}
\end{equation*}
$$

1. Use the standard trick that for any random variable Z and any $t>0, \operatorname{Pr}(Z \geq z)=$ $\operatorname{Pr}\left(e^{t Z} \geq e^{t z}\right)$ to show that for $x>c$ and $t>0$

$$
\operatorname{Pr}\left(\sum_{i=1}^{k} X_{i} \geq k x\right) \leq e^{-k \phi_{t}(x)}
$$

where $\phi_{t}(x)=t x-\log \mathbb{E}\left[e^{t X}\right][1$ Point $]$.
2. Use Jensen's inequality to prove that $\phi_{t}(x) \leq(x-c) t$, and use this to conclude that the supremum in (3) can be taken over t such that $(x-c) t \geq 0$ (Hint: use that $\phi_{t}(x)=0$ if $t=0$.) Infer the bound (1) [2 Points].
3. Consider the variables $Y_{i}=-X_{i}$ to prove (2) [1 Point].

3. Concentration for Poisson and Binomial Random Variables [7 Points]

1. Calculate $\phi_{t}(x)=t x-\log \mathbb{E}\left[e^{t X}\right]$ for a Poisson random variable $X \sim \operatorname{Poi}(c)$. Optimize over t to show that

$$
I(x)=c-x+x \ln \frac{x}{c} .
$$

Prove that $I(x)=\int_{c}^{x} d y \int_{c}^{y} \frac{1}{z} d z$ if $x>c$. Use this, and the analogous formula for $x<c$ to show that $I(x) \geq \frac{(x-c)^{2}}{2 \max \{x, c\}}$. Conclude that

$$
\begin{align*}
& \operatorname{Pr}\left(\sum_{i=1}^{k} X_{i} \geq k x\right) \leq e^{-k \frac{(x-c)^{2}}{2 x}} \quad \text { if } \quad x>c \\
& \operatorname{Pr}\left(\sum_{i=1}^{k} X_{i} \leq k x\right) \leq e^{-k \frac{(c-x)^{2}}{2 c}} \quad \text { if } \quad x<c \tag{4}
\end{align*}
$$

[2 Points]
2. Let $B e(p)$ be the Bernoulli distribution. Optimize over t in the expression for $I(x)$ and prove that for $X \sim B e(p)$ and $x \in(0,1), I(x)$ is the relative entropy (also called Kullback-Leibler divergence)

$$
I_{p}(x)=x \log \left(\frac{x}{p}\right)+(1-x) \log \left(\frac{1-x}{1-p}\right)
$$

Taylor expand $I_{p}(x)$ to second order around $x=p$ and bound the second derivative from below by $\min \{1 / x, 1 / p\}$ to show that $I_{p}(x) \geq \frac{(x-p)^{2}}{2 \max \{x, p\}}$. [3 Points]
3. Consider now k i.i.d. random variables $X_{i} \sim \operatorname{Bin}(n, p)$ with $n p=c$. Use the last result to show that the bounds (4) hold for $X_{i} \sim \operatorname{Bin}(n, p)$ with $n p=c$. Hint: As an intermediate step, prove that the distribution of $\operatorname{Bin}(n, p)$ is the same as the sum of n i.i.d. Bernoulli random variables and use this to express $I(x)$ as $n I_{p}(x / n)$. [2 Points]

4. Branching process with arbitrary off-spring distribution [4 Bonus Points]

In class, we showed that for a Branching Process with off-spring $X \sim \operatorname{Poi}(c)$ with $c>1$, there exists some constant $D>0$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(k \leq\left|T_{X}\right|<\infty\right) \leq \frac{e^{-k D}}{1-e^{-D}} \tag{5}
\end{equation*}
$$

i.e., we proved that a Poisson branching process above criticality that dies out is not very likely to reach a large size. Here you will prove this result for an arbitrary off-spring distributions, as long as $\mathbb{E}[X]>1$.

1. Let X be a random variable taking values in $\mathbb{R}_{+}=[0, \infty)$ with $0<\mathbb{E}[X]<\infty$. Prove that for $x<\mathbb{E}[X]$, the rate function $I(x)$ is strictly positive. Hint: Use that $\phi_{0}(x)=0$ and consider the derivative of $\phi_{t}(x)$ with respect to t - but be careful, $\mathbb{E}\left[e^{t X}\right]$ may not be defined for all $t \in \mathbb{R}$.
2. Show the same statement in the case where $\mathbb{E}[X]=\infty$.
3. Apply this result for $x=1$ and $c=\mathbb{E}[X]>1$, and proceed as in class to prove (5) for general X. Express D in terms of the rate function $I(\cdot)$.
