CS294-204 Phase Transitions (Fall 2021)

Homework #1
Due Fr. 9/10

1. Poisson, Geometric, and Binomial Birth process [7 Points]

1. Calculate the generating function G(n) for a Poisson random variable Poi(c); write
out the implicit equation for the extinction probability n of a birth process with
offspring distribution Poi(c) to show that the survival probability, § = 1 —n obeys
the equation 0 + e~ = 1 [2 Points].

2. Calculate the generating function G(n) of a geometric random variable X with
P(X = k) = ¢*(1 — q), k > 0. Calculate the expectation, ¢ = E[X], and determine
the threshold for the survival of a birth process with offspring distribution X. Solve
the implicit equation for the survival probability § = 1 — n and express it in terms
of ¢ [2 Points].

3. Calculate the generating function Gy, ,(x) for Bin(n, p), and express it in the form
f(z,p)™. Show that if n — oo and np — ¢ € (0,00), Gy, p(z) converges to the
generating function of a Poisson random variable with mean c¢. Prove that the
convergence is uniform for z € [0, 1], and use this to conclude that the extinction
probability of a branching process with offspring distribution Bin(n,p) converges
to that of a branching process with offspring distribution Poi(c) [3 Points].

2. Concentration for General Random Variables [4 Points]

Let X be a random variable with E[X] = ¢ and let X1, X, ... be i.i.d. with the same
distribution as X. In this exercise we will show that
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where I(z) is the “rate function”

I(z) = ilelﬂg(tx — log E[e!X]). (3)

1. Use the standard trick that for any random variable Z and any t > 0, Pr(Z > z) =
Pr(e*? > €'#) to show that for > c and t > 0

k
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where ¢;(z) = tz — log E[e!X] [1 Point].

2. Use Jensen’s inequality to prove that ¢:(z) < (z — ¢)t, and use this to conclude
that the supremum in can be taken over t such that (x — ¢)t > 0 (Hint: use
that ¢(x) =0 if t = 0.) Infer the bound [2 Points].

3. Consider the variables Y; = —X; to prove (2)) [1 Point].



3. Concentration for Poisson and Binomial Random Variables [7 Points]

1. Calculate ¢y(x) = tx — logE[e!X] for a Poisson random variable X ~ Poi(c).

Optimize over ¢ to show that
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(z—c)?
2 max{z,c}"

x < ¢ to show that I(x) > Conclude that

k e
Pr(ZXizkx)ge_k('%) if z>c¢

i=1

k
(c—)2 |
Pr(ZXiSkx)Se_k 2e if z<e.
i=1

[2 Points]

2. Let Be(p) be the Bernoulli distribution. Optimize over ¢ in the expression for I(z)
and prove that for X ~ Be(p) and € (0,1), I(z) is the relative entropy (also

called Kullback—Leibler divergence)

I,(z) = zlog (i) +(1—2)log G:i) .

Taylor expand I, (x) to second order around z = p and bound the second derivative

2
from below by min{1/z,1/p} to show that I,(z) > Qr(nzxén)’p}'

[3 Points]

3. Consider now k i.i.d. random variables X; ~ Bin(n,p) with np = ¢. Use the last
result to show that the bounds hold for X; ~ Bin(n,p) with np = ¢. Hint: As
an intermediate step, prove that the distribution of Bin(n,p) is the same as the
sum of n i.i.d. Bernoulli random variables and use this to express I(x) as nl,(z/n).

[2 Points]

4. Branching process with arbitrary off-spring distribution [4 Bonus Points]

In class, we showed that for a Branching Process with off-spring X ~ Poi(c) with

¢ > 1, there exists some constant D > 0 such that

—kD

i.e., we proved that a Poisson branching process above criticality that dies out is not
very likely to reach a large size. Here you will prove this result for an arbitrary off-spring

distributions, as long as E[X] > 1.

1. Let X be a random variable taking values in Ry = [0,00) with 0 < E[X] < oo.
Prove that for < E[X], the rate function I(x) is strictly positive. Hint: Use that
¢o(x) = 0 and consider the derivative of ¢i(x) with respect to t - but be careful,

E[e!X] may not be defined for all t € R.

2. Show the same statement in the case where E[X] = oo.

3. Apply this result for =1 and ¢ = E[X] > 1, and proceed as in class to prove

for general X. Express D in terms of the rate function I(-).



