CS294-179 Network Structure and Epidemics Fall 2020 Homework #6 Due Fr, Nov. 20

Each of the following exercises has 9 points. Choose 2 (if you do 3, I'll count the one with the least points as bonus).

1 Differential Equations for SIR on $CM(\tilde{d})$

In this question we rewrite Volz equations to eliminate dependency of variables p_I and p_S .

1. By the definition of θ show that $\tau p_I = -\frac{\dot{\theta}}{\theta}$ and use this to eliminate p_I from the differential equation for p_S ,

$$\frac{dp_S}{dt} = \tau p_S p_I (1 - \frac{\theta G^{\prime\prime}(\theta)}{G^{\prime}(\theta)})$$

2. Solve the differential equation from 1) and conclude that there is a constant C that

$$p_S = \frac{G'(\theta)}{C\theta}.$$

Also, show that C = G'(1).

Hint: As an intermediate step, rewrite the differential equation obtained in 1) in the form

$$\frac{d\log p_S}{dt} = F'(\theta)\dot{\theta}$$

for some function F and use this to concluded that p_S is equal to $e^{F(\theta)}$ times some integration constant.

3. Show that

$$\frac{dp_I}{dt} = \frac{1}{\tau} \Big(\frac{\dot{\theta}^2}{\theta^2} - \frac{\ddot{\theta}}{\theta} \Big).$$

4. Recall the following equation

$$\frac{dp_I}{dt} = -p_I(\tau + \gamma) + \tau p_I^2 + \tau p_S p_I \frac{\theta G''(\theta)}{G'(\theta)}.$$

Use parts 1) - 3 to show that

$$\ddot{\theta} = -(\gamma + \tau)\dot{\theta} + \tau \frac{G''(\theta)}{G'(1)}\dot{\theta}$$

5. Show that

$$\dot{\theta} = -\tau\theta + \gamma(1-\theta) + \tau \frac{G'(\theta)}{G'(1)}.$$

Hint: Use the initial conditions $\theta(0) = 1$, $p_I(0) = 0$ to eliminate the integration constant you get.

2 Generating Function for Final Outbreak Size

Recall that the generating function for the in-degree of a vertex of degree d in the underlying graph is

$$G_d^- = \left(1 - p(1 - x)\right)^d$$
 where $p = \frac{\tau}{\gamma + \tau};$

Recall further that the generating functions for the degree distribution in the configuration model is $G(x) = \sum_{k} p_k x^k$, while the generating function for the forward degrees is

$$\tilde{G}(x) = \sum_{k} p_k^* x^k$$
 where $p_k^* = \frac{(k+1)p_{k+1}}{\bar{d}}$,

with $\bar{d} = \sum_k p_k$ denoting the average degree.

1) Calculate the generating functions

$$G^{-}(x) = \mathbb{E}_d[G^{-}_d(x)]$$
 and $\tilde{G}^{-}(x) = \mathbb{E}_{\tilde{d}}[G^{-}_{\tilde{d}}(x)]$

where the expectations are with respect to p_k and p_k^* . Express the results in terms of G and \tilde{G} . Hint, you should get something of the form $G^-(x) = G(A + Bx)$, and similarly for \tilde{G}^- .

2) Recall that in the birth process approach, the final fraction of recovered vertices is equal to

$$R_{\infty} = 1 - G^{-}(\tilde{\eta}^{-})$$

where $\tilde{\eta}^-$ is the smallest solution of $\tilde{\eta}^- = \tilde{G}^-(\tilde{\eta}^-)$. Rewrite these equations in terms of G and \tilde{G} .

In the previous exercises, we showed that the Volz-variable θ governing the time evolutions of the fraction of susceptible nodes of degree, $S = G(\theta)$, obeys a differential equation which can be written in the form

$$\frac{d\theta}{dt} = (\gamma + \tau) \Big(1 - \theta + p \Big(\frac{G'(\theta)}{G'(1)} - 1 \Big) \Big).$$

3) Calculate the derivative G'(x) of G(x), write $\tilde{G}(x)$ in terms of G'(x) and G'(1), and use the result to express the above differential equation in terms of \tilde{G} .

The equation $d\theta/dt = 0$ clearly has the solution $\theta = 1$. As discussed in class, for $R_0 > 1$, the second solution of $d\theta/dt = 0$ is the asymptotic value of θ as $t \to \infty$, $\theta_{\infty} = \lim_{t\to\infty} \theta(t)$.

- 4) Write the implicit equation for θ_{∞} using the generating function \tilde{G} . Bonus: show that for $R_0 > 1$ it has exactly two solutions in [0, 1]: the solution $\theta = 1$ and a unique solution $\theta_{\infty} \in (0, 1)$.
- 5) Write R_{∞} in terms of $S_{\infty} = G(\theta_{\infty})$ and guess how θ_{∞} and $\tilde{\eta}^-$ are related. Hint use the expression for R_{∞} you derived in part 2); you should get a linear relationship between the two.
- Show that θ_∞ satisfies the implicit equation derived in part 4) if and only if η
 ⁻ satisfies the implicit equation obtained in part 2).

3 The effect of degrees fluctuations

Consider a configuration model with degree distribution (p_k) and generating function $G(\theta) = \sum_k \theta^k p_k$. Recall that in the notation of Volz, at any given time, θ^d is the fraction of degree d vertices which are still susceptible, and $S = G(\theta) = \sum_k p_k \theta^d$ is the ratio of the number of susceptible vertices to the total number of vertices.

In the previous exercises, we showed that the Volz-variable θ obeys the differential equation

$$\frac{d\theta}{dt} = (\gamma + \tau) \Big(1 - \theta + p \Big(\frac{G'(\theta)}{G'(1)} - 1 \Big) \Big), \qquad p = \frac{\tau}{\tau + \gamma},$$

and we showed that the asymptotic value of θ as $t \to \infty$ is the unique solution $\theta_{\infty} \in (0, 1)$ of the equation obtained by setting $\frac{d\theta}{dt} = 0$. In this exercise, we will study this solution for two particular graphs.

- 1) Let G be a 4-regular random graph (drawn from configuration model). Set $\tau = 2$ and $\gamma = 1$, so that $p = \tau/(\tau + \gamma) = 2/3$. Calculate R_0 , and the final fraction of nodes which were infected (and then removed) at the end of the infection, $R_{\infty} = 1 S(\theta_{\infty})$.
- 2) Consider the configuration model where all nodes have either degree 2 or degree 10, with the fraction of degree 2 nodes equal to $p_2 = \frac{3}{4}$ (and the fraction of degree 10 nodes equal to $p_{10} = \frac{1}{4}$), so that the average degree is the same as in part 1, i.e., $\bar{d} = 4$. Again choose $\tau = 2$ and $\gamma = 1$. Compute R_0 .
- 3) What fraction of degree 2 nodes are infected (and then removed) by the end of the process? How about degree 10 nodes?
- 4) Adjust τ so that R_0 becomes the same as in part 1. What fraction of degree 2 nodes are infected (and then removed) by the end of the process? How about degree 10 nodes?

Remark: You can use WolframAlpha to solve the polynomial equations for θ_{∞} you will get.