
CS294-179 Network Structure and Epidemics
Fall 2020

Homework #6
Due Fr, Nov. 20

Each of the following exercises has 9 points. Choose 2 (if you do 3, I’ll count the one with
the least points as bonus).

1 Differential Equations for SIR on CM(d̃)

In this question we rewrite Volz equations to eliminate dependency of variables pI and pS .

1. By the definition of θ show that τpI = − θ̇θ and use this to eliminate pI from the differential
equation for pS ,

dpS
dt

= τpSpI(1−
θG′′(θ)

G′(θ)
)

2. Solve the differential equation from 1) and conclude that there is a constant C that

pS =
G′(θ)

Cθ
.

Also, show that C = G′(1).

Hint: As an intermediate step, rewrite the differential equation obtained in 1) in the form

d log pS
dt

= F ′(θ)θ̇

for some function F and use this to concluded that pS is equal to eF (θ) times some
integration constant.

3. Show that
dpI
dt

=
1

τ

( θ̇2
θ2
− θ̈

θ

)
.

4. Recall the following equation

dpI
dt

= −pI(τ + γ) + τp2I + τpSpI
θG′′(θ)

G′(θ)
.

Use parts 1) - 3) to show that

θ̈ = −(γ + τ)θ̇ + τ
G′′(θ)

G′(1)
θ̇.

5. Show that

θ̇ = −τθ + γ(1− θ) + τ
G′(θ)

G′(1)
.

Hint: Use the initial conditions θ(0) = 1, pI(0) = 0 to eliminate the integration constant
you get.
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2 Generating Function for Final Outbreak Size

Recall that the generating function for the in-degree of a vertex of degree d in the underlying
graph is

G−d =
(

1− p(1− x)
)d

where p =
τ

γ + τ
;

Recall further that the generating functions for the degree distribution in the configuration
model is G(x) =

∑
k pkx

k, while the generating function for the forward degrees is

G̃(x) =
∑
k

p∗kx
k where p∗k =

(k + 1)pk+1

d̄
,

with d̄ =
∑
k pk denoting the average degree.

1) Calculate the generating functions

G−(x) = Ed[G−d (x)] and G̃−(x) = Ed̃[G
−
d̃

(x)]

where the expectations are with respect to pk and p∗k. Express the results in terms of G and

G̃. Hint, you should get something of the form G−(x) = G(A+Bx), and similarly for G̃−.

2) Recall that in the birth process approach, the final fraction of recovered vertices is equal to

R∞ = 1−G−(η̃−)

where η̃− is the smallest solution of η̃− = G̃−(η̃−). Rewrite these equations in terms of G
and G̃.

In the previous exercises, we showed that the Volz-variable θ governing the time evolutions of
the fraction of susceptible nodes of degree, S = G(θ), obeys a differential equation which can
be written in the form

dθ

dt
= (γ + τ)

(
1− θ + p

(G′(θ)
G′(1)

− 1
))
.

3) Calculate the derivative G′(x) of G(x), write G̃(x) in terms of G′(x) and G′(1), and use the
result to express the above differential equation in terms of G̃.

The equation dθ/dt = 0 clearly has the solution θ = 1. As discussed in class, for R0 > 1, the
second solution of dθ/dt = 0 is the asymptotic value of θ as t→∞, θ∞ = limt→∞ θ(t).

4) Write the implicit equation for θ∞ using the generating function G̃. Bonus: show that for
R0 > 1 it has exactly two solutions in [0, 1]: the solution θ = 1 and a unique solution
θ∞ ∈ (0, 1).

5) Write R∞ in terms of S∞ = G(θ∞) and guess how θ∞ and η̃− are related. Hint use the
expression for R∞ you derived in part 2); you should get a linear relationship between the
two.

6) Show that θ∞ satisfies the implicit equation derived in part 4) if and only if η̃− satisfies the
implicit equation obtained in part 2).
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3 The effect of degrees fluctuations

Consider a configuration model with degree distribution (pk) and generating function G(θ) =∑
k θ

kpk. Recall that in the notation of Volz, at any given time, θd is the fraction of degree
d vertices which are still susceptible, and S = G(θ) =

∑
k pkθ

d is the ratio of the number of
susceptible vertices to the total number of vertices.

In the previous exercises, we showed that the Volz-variable θ obeys the differential equation

dθ

dt
= (γ + τ)

(
1− θ + p

(G′(θ)
G′(1)

− 1
))
, p =

τ

τ + γ
,

and we showed that the asymptotic value of θ as t → ∞ is the unique solution θ∞ ∈ (0, 1) of
the equation obtained by setting dθ

dt = 0. In this exercise, we will study this solution for two
particular graphs.

1) Let G be a 4-regular random graph (drawn from configuration model). Set τ = 2 and γ = 1,
so that p = τ/(τ + γ) = 2/3. Calculate R0, and the final fraction of nodes which were
infected (and then removed) at the end of the infection, R∞ = 1− S(θ∞).

2) Consider the configuration model where all nodes have either degree 2 or degree 10, with
the fraction of degree 2 nodes equal to p2 = 3

4 (and the fraction of degree 10 nodes equal
to p10 = 1

4 ), so that the average degree is the same as in part 1, i.e., d̄ = 4. Again choose
τ = 2 and γ = 1. Compute R0.

3) What fraction of degree 2 nodes are infected (and then removed) by the end of the process?
How about degree 10 nodes?

4) Adjust τ so that R0 becomes the same as in part 1. What fraction of degree 2 nodes are
infected (and then removed) by the end of the process? How about degree 10 nodes?

Remark: You can use WolframAlpha to solve the polynomial equations for θ∞ you will get.
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