CS294-179 Network Structure and Epidemics Fall 2020
 Homework \#6
 Due Fr, Nov. 20

Each of the following exercises has 9 points. Choose 2 (if you do 3 , I'll count the one with the least points as bonus).

1 Differential Equations for SIR on $C M(\tilde{d})$

In this question we rewrite Volz equations to eliminate dependency of variables p_{I} and p_{S}.

1. By the definition of θ show that $\tau p_{I}=-\frac{\dot{\theta}}{\theta}$ and use this to eliminate p_{I} from the differential equation for p_{S},

$$
\frac{d p_{S}}{d t}=\tau p_{S} p_{I}\left(1-\frac{\theta G^{\prime \prime}(\theta)}{G^{\prime}(\theta)}\right)
$$

2. Solve the differential equation from 1) and conclude that there is a constant C that

$$
p_{S}=\frac{G^{\prime}(\theta)}{C \theta} .
$$

Also, show that $C=G^{\prime}(1)$.
Hint: As an intermediate step, rewrite the differential equation obtained in 1) in the form

$$
\frac{d \log p_{S}}{d t}=F^{\prime}(\theta) \dot{\theta}
$$

for some function F and use this to concluded that p_{S} is equal to $e^{F(\theta)}$ times some integration constant.
3. Show that

$$
\frac{d p_{I}}{d t}=\frac{1}{\tau}\left(\frac{\dot{\theta}^{2}}{\theta^{2}}-\frac{\ddot{\theta}}{\theta}\right) .
$$

4. Recall the following equation

$$
\frac{d p_{I}}{d t}=-p_{I}(\tau+\gamma)+\tau p_{I}^{2}+\tau p_{S} p_{I} \frac{\theta G^{\prime \prime}(\theta)}{G^{\prime}(\theta)} .
$$

Use parts (1) - 3) to show that

$$
\ddot{\theta}=-(\gamma+\tau) \dot{\theta}+\tau \frac{G^{\prime \prime}(\theta)}{G^{\prime}(1)} \dot{\theta} .
$$

5. Show that

$$
\dot{\theta}=-\tau \theta+\gamma(1-\theta)+\tau \frac{G^{\prime}(\theta)}{G^{\prime}(1)} .
$$

Hint: Use the initial conditions $\theta(0)=1, p_{I}(0)=0$ to eliminate the integration constant you get.

2 Generating Function for Final Outbreak Size

Recall that the generating function for the in-degree of a vertex of degree d in the underlying graph is

$$
G_{d}^{-}=(1-p(1-x))^{d} \quad \text { where } \quad p=\frac{\tau}{\gamma+\tau}
$$

Recall further that the generating functions for the degree distribution in the configuration model is $G(x)=\sum_{k} p_{k} x^{k}$, while the generating function for the forward degrees is

$$
\tilde{G}(x)=\sum_{k} p_{k}^{*} x^{k} \quad \text { where } \quad p_{k}^{*}=\frac{(k+1) p_{k+1}}{\bar{d}}
$$

with $\bar{d}=\sum_{k} p_{k}$ denoting the average degree.

1) Calculate the generating functions

$$
G^{-}(x)=\mathbb{E}_{d}\left[G_{d}^{-}(x)\right] \quad \text { and } \quad \tilde{G}^{-}(x)=\mathbb{E}_{\tilde{d}}\left[G_{\tilde{d}}^{-}(x)\right]
$$

where the expectations are with respect to p_{k} and p_{k}^{*}. Express the results in terms of G and \tilde{G}. Hint, you should get something of the form $G^{-}(x)=G(A+B x)$, and similarly for \tilde{G}^{-}.
2) Recall that in the birth process approach, the final fraction of recovered vertices is equal to

$$
R_{\infty}=1-G^{-}\left(\tilde{\eta}^{-}\right)
$$

where $\tilde{\eta}^{-}$is the smallest solution of $\tilde{\eta}^{-}=\tilde{G}^{-}\left(\tilde{\eta}^{-}\right)$. Rewrite these equations in terms of G and \tilde{G}.

In the previous exercises, we showed that the Volz-variable θ governing the time evolutions of the fraction of susceptible nodes of degree, $S=G(\theta)$, obeys a differential equation which can be written in the form

$$
\frac{d \theta}{d t}=(\gamma+\tau)\left(1-\theta+p\left(\frac{G^{\prime}(\theta)}{G^{\prime}(1)}-1\right)\right)
$$

3) Calculate the derivative $G^{\prime}(x)$ of $G(x)$, write $\tilde{G}(x)$ in terms of $G^{\prime}(x)$ and $G^{\prime}(1)$, and use the result to express the above differential equation in terms of \tilde{G}.

The equation $d \theta / d t=0$ clearly has the solution $\theta=1$. As discussed in class, for $R_{0}>1$, the second solution of $d \theta / d t=0$ is the asymptotic value of θ as $t \rightarrow \infty, \theta_{\infty}=\lim _{t \rightarrow \infty} \theta(t)$.
4) Write the implicit equation for θ_{∞} using the generating function \tilde{G}. Bonus: show that for $R_{0}>1$ it has exactly two solutions in $[0,1]$: the solution $\theta=1$ and a unique solution $\theta_{\infty} \in(0,1)$.
5) Write R_{∞} in terms of $S_{\infty}=G\left(\theta_{\infty}\right)$ and guess how θ_{∞} and $\tilde{\eta}^{-}$are related. Hint use the expression for R_{∞} you derived in part 2); you should get a linear relationship between the two.
6) Show that θ_{∞} satisfies the implicit equation derived in part 4 if and only if $\tilde{\eta}^{-}$satisfies the implicit equation obtained in part 22 .

3 The effect of degrees fluctuations

Consider a configuration model with degree distribution $\left(p_{k}\right)$ and generating function $G(\theta)=$ $\sum_{k} \theta^{k} p_{k}$. Recall that in the notation of Volz, at any given time, θ^{d} is the fraction of degree d vertices which are still susceptible, and $S=G(\theta)=\sum_{k} p_{k} \theta^{d}$ is the ratio of the number of susceptible vertices to the total number of vertices.

In the previous exercises, we showed that the Volz-variable θ obeys the differential equation

$$
\frac{d \theta}{d t}=(\gamma+\tau)\left(1-\theta+p\left(\frac{G^{\prime}(\theta)}{G^{\prime}(1)}-1\right)\right), \quad p=\frac{\tau}{\tau+\gamma},
$$

and we showed that the asymptotic value of θ as $t \rightarrow \infty$ is the unique solution $\theta_{\infty} \in(0,1)$ of the equation obtained by setting $\frac{d \theta}{d t}=0$. In this exercise, we will study this solution for two particular graphs.

1) Let G be a 4-regular random graph (drawn from configuration model). Set $\tau=2$ and $\gamma=1$, so that $p=\tau /(\tau+\gamma)=2 / 3$. Calculate R_{0}, and the final fraction of nodes which were infected (and then removed) at the end of the infection, $R_{\infty}=1-S\left(\theta_{\infty}\right)$.
2) Consider the configuration model where all nodes have either degree 2 or degree 10 , with the fraction of degree 2 nodes equal to $p_{2}=\frac{3}{4}$ (and the fraction of degree 10 nodes equal to $p_{10}=\frac{1}{4}$), so that the average degree is the same as in part 11. i.e., $\bar{d}=4$. Again choose $\tau=2$ and $\gamma=1$. Compute R_{0}.
3) What fraction of degree 2 nodes are infected (and then removed) by the end of the process? How about degree 10 nodes?
4) Adjust τ so that R_{0} becomes the same as in part 1. What fraction of degree 2 nodes are infected (and then removed) by the end of the process? How about degree 10 nodes?

Remark: You can use WolframAlpha to solve the polynomial equations for θ_{∞} you will get.

