CS294-179, Spring 2025
Homework #°5, Due 4/11

1 Cut-Norm and Approximation by Step-functions [6 Points]

Recall that given a function W : [0,1]? — R and a partition P = (Yi,...,Y%) of [0,1] into disjoint sets, we
define Wp as the step-function which is equal to 8;; = W fy_ wy. WonY; xY;. Also recall the definition
T J v J

of the cut-norm, |W|lg = supg 1,1 ‘ Jswr W’ We say that U is a step function on P x P if U is constant
on all sets of the form Y x Y/ with Y, Y’ € P.

a) Show that the map W — Wp is a contraction with respect to the Lo norm, i.e., show that
Well2 < [[W]|a.
Hint: Consider |[W — Wp||3 and then use that [ WpW = [ W3.

b) Show that in the La-norm, the step function Wp is the best possible step-function approximation to W
on P x P, i.e., show that

W —Wplla < ||W —"Ull2 for all step functions U on P x P.

c¢) Show that when calculating the cut-norm of ||Wp||g, you can restrict yourself to sets S and T' which are
unions of classes in P, i.e., show that
fool
SxT

where o(P) is the set of subsets S C [0,1] of the form S = U;c;Y; for some I C [k]. Hint: Consider a
fixed set T, and the function fr(x) = [.dyWp(z,y) and let S+ be the sets where f < 0 and f > 0,

respectively. Show that for all S C [0, 1],
< max / fm—/ fr
Sy s_

’ /S fr(a)

to prove that S can be chosen in o(P). After that, fix S € o(P) and repeat the argument for 7.

IWrllo = _ max
S,Teo(P)

d) Use ) to show that the map W — Wp is a contraction with respect to the cut-norm, i.e., show that

Welo < [[W]lo.

e) Use @ and the triangle inequality to prove that up to a factor of two, the step function Wp is the best
possible step-function approximation to W on P x P with respect to the cut-norm:

|\W —Wp|o <2||W —Ul|lg for all step functions U on P x P.

Hint: Use that Up = U.

2 Concentration once more [4 Points]

We will need the following generalization of the Chernoff bound for i.i.d. Bernoulli random variables: Let
X1, ..., Xn independent r.v. with X; ~ Be(p;) and let n; € {0,1,2} be non-random.

a) Prove that

2
Pr(zni(Xi —pi) > 26 Zpi) <o T Tim,
i i

Hint: Bound E[e!™(Xi=Pi)] by exp((e™* — 1)p; — tnip;) < exp((e? — 1 — 2t)p;).



b) In a similar way, show that
2
Pr( Yo mi(Xi—pi) < -203 pi) e T Xn
c¢) Use these two bounds to show that
Pr(’ Z ni(X; —

Hint: For € > 1, the bound is trivial (why?), so you may assume without loss of generality that e < 1.

62
) < 2¢~ TN,

3 G(n,p) converges to W =p [3 Points + 1 Bonus Point]

Recall that the empirical graphon of a graph with n x n adjacency matrix A (or more general, any n X n

matrix A) is defined as
n
z,y) = Z Aijleer, yer,
ij=1
where Iy, ..., I, is a partition of [0, 1] into adjacent intervals of width 1/n, and I is the indicator function
that the event B happening, i.e., it is one if B holds, and 0 otherwise.

(a) [1 Point] Use the results from Problem [I), part to conclude that for any matrix with real valued
entries, the cut-norm of W4 is a maximum over a finite number of sets:

[Wallg:= sup
U,vclo,1]

W4 — Al
[ wa] = o e [ 4

ieU
JEV

Apply this to the case where A is the adjacency matrix of G(n,p), and use the above expression to
express ||Wa — P||o (where P is the constant function that assigns p to (z,y) € [0,1]?) as

1 1
Wy — P|lgp = — max A —p)|l=— max |—p|SNT|+ —-p
W= Plo = 5 e |52(4y =p)| = 5 mas |-pIS0T1+ 3 (45 =)
JeT i#i

(b) [2 Points]: Calculate the expectation of the sums for fixed S and T, and then use the Chernoff bound
from Problem I part. with N = (”) and p; = p) to bound the probability that this sum is larger than
en? in absolute value. Use a union bound to prove that G(n,p) converges to the constant graphon P in

probability.

(¢) [1 Bonus Point]: Consider now the case of sparse random graphs, i.e., the case that p = p,, — 0. Show
that if it does not go to zero too fast, you get that |- Ly, —1)g — O in probability. How sparse can

your graphs be? Can you do p, = 1/logn, or p, = 1/f What prevents you from choosing p = ¢/n?

4 Graph Limit of Chung-Lu Model [5 Points]

In this exercise, we consider a dense version of the Chung-Lu Model, defined in terms of a function w :
[0,1] — [0,1]. In this model, we first draw z1,..., 2, ild uniformly at random in [0, 1], and then connect
i < 7 with probability

Pij = w(z;)w(z;),
giving a graph G,, with adjacency matrix A;; = A;; ~ Be(P;;), independently for all ¢ < j. In this exercise,
you will show that the sequence G,, converges to the graphon

W(z,y) = w(z)w(y)

in the cut-metric og.



(a) [2 Points]: Proceed as in the previous problem to show that
IWa —Wp||g — 0 in probability,

where P is the matrix with entries P;;. Hint: the proof is identical, except that when using the bound
from Problem |2, the probabilities p; now become the probabilities F;; rather than the constant p.

(b) Specialize now to the case where w is a step function,

K

w(z) =Y oxly, where J,=[(k-1)/K k/K),
k=1
choose w1,...,7, € [0,1] ii.d. uniformly at random, and order them such that x; < o < --- < @p,.

Defining P to be the matrix P after the reordering is applied, we note that
K
Ws(z,y) = w(z)w(y) where w(x)= Zakﬂfw
k=1

with J;, being the union of the intervals I; = [(i — 1)/n,i/n) for all i such that z; € Jj.

(i) [1 Point] Let Nj be the number of points x; such that z; € J;. Calculate the expectation and
variance of Vi, and use this to prove that as n — oo,

€r = ml?x‘|jk| - |Jk|‘ — 0 in probability.

(ii) [1 Point] Bound the L; distance of w and @ in terms of €, and use this to prove that

|Wg—=Wl|g < ||Ws—W]|1—0 in probability.

(iii) [1 Point] Show that there is an interval permutation ¢ : [0, 1] — [0, 1] such that Wg = Wj and use
what you have shown so far to prove that for the case of step-functions, GG,, converges to W in the
cut-metric.

(c) The general case can be reduced to the case of step-functions by noting that any bounded, measurable
function can be approximated by step functions. We won’t do this here - see, however, the bonus problem
below, where we address this problem in a more general context.

5 Inhomogneous random graphs converge to the generating graphon
[6 Bonus Points|

Recall that a graphon is a symmetric function from [0, 1]? into [0, 1], i.e., a function W : [0,1]?> — [0, 1] such
that W(z,y) = W(y,x). We define the sequence G,, (W) of inhomogeneous random graphs generated by W
as follows:

1. Choose z1, ..., z, i.i.d. uniformly at random from [0, 1], and define a matrix P(™) = P(™) (W) € [0, 1]**™
by setting Pi;l) = W(x;, x;).

2. The graph G, (W) on [n] is then defined by choosing, independently for all i < j, an edge ij with
probability Pi(jn).

In this exercise, we will prove the following theorem, which implies that dm (Gn(W), W) — 0 in probability.
Theorem 1.1 If W is a graphon, then

E [55 (Gn(W),W)} 0.



The theorem relies on two lemmas, which we will prove separately.

Lemma 1.1 There exists a constant D < oo, such that if P € [0,1]"*™ is a symmetric matriz with empty
diagonal, and A € {0,1}"*™ is the random, symmetric matriz with empty diagonal obtained from P by
setting A;; = Aj; = 1 with probability P;;, independently for all i < j, then

Pr(|Wa —Wp|lg > D/n) <2e ™.

As a consequence
E[|Wa —Wp|g] < D/n+2e".

To state the second lemma, for an n x n matrices A and a graphon W, we define

51(A, W) = min [W — W |1,

where the min is taken over all permutations of [n], and Af; = A, ;) +(j)- Since such a permutation is an
interval permutation, and since the cut-norm is bounded by the L; norm, we clearly have that og(W4, W) <
51 (Wa, W).

Lemma 1.2 For all symmetric W : [0,1]* — [0,1], define P™ = P (W) to be the n x n random matriz
with entries Pi(jn) = W(x;,x;), where z1,...,x, are chosen #d uniformly at random in [0,1]. Then

E [Sl (P(”),Wﬂ 0.

(a) Use the Chernoff bound from Exercise [2| to prove Lemma Hint: at this point the proof is a one-line
argument, since you have already done the necessary estimate when solving Part @ of Problem {4} since
the precise form for P;; never entered your proof. [1 Bonus Point]

(b) Prove Lemma for step functions. More precisely, let Qj be the partition of [0,1] into k intervals
of length 1/k, and prove Lemma for functions W which are constant on sets of the form Y x Y/,
Y, Y € Q. [1 Bonus Point]

e Hint: Reorder zi,...,z, in such a way that 1 < x5 < --- < x,, and use that for n > k, the
fraction of variables x; that fall into the i*" interval of the partition @y, is concentrated around 1/k.
Determine how large n has to be (as a function of k), to get enough concentration to imply that

E {51(13(70 W), W)} 0.

(¢) Reduce Lemmato the case where W is a step function. To this end, use the following approximation
to the graphon W: the function Wy, obtained by averaging W over the blocks Y x Y, where Y and Y’
are classes in Q.

e Prove that for any two graphons U, W,

1 n n n—1
SED P U) = PP W) = ——=|[U = W

Y n
i#]

e Use the fact that ||[Wg, — W||1 — 0 to reduce the proof of Lemma [1.2| to the case analyzed under
@ (For people familiar with measure theory: you can use the Lebesgue differentiation theorem to
prove almost sure convergence, which implies L; convergence. You are not asked to prove this fact

- you can just use it). [3 Bonus Points]
(d) Prove Theorem from Lemmas and [1 Bonus Point]
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