CS294-179 Network Structure and Epidemics Fall 2020
 Homework \#5
 Due Mo, Nov. 9

1 Polya Urn

[5 Points]
Recall that a polya urn with R initial red, and B initial blue balls is a process where R and B are updated according to the following rule:

- Set $R_{0}=R$ and $B_{0}=B$
- At time t, draw a random ball from all $B_{t}+R_{t}$ balls, and raise the R_{t} by one if the ball is red - otherwise raise B_{t} by one. Denote the new number of red balls by R_{t+1} and the new number of blue balls by B_{t+1}.

Set $X_{t}=1$ if the ball drawn at time t is red, and $X_{t}=0$ otherwise. Fix a set $I_{R} \subset[n]$ and it's complement, I_{B}. We have seen that the probability of drawing a sequence X_{1}, \ldots, X_{n} such that $X_{i}=1$ for $i \in I_{R}$ and $X_{i}=0$ for $i \in I_{B}$ does only depend on the sizes n_{1} and n_{2} of I_{1} and I_{2} and is equal to

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{i}=1 \text { for } i \in I_{R} \text { and } X_{i}=0 \text { for } i \in I_{B}\right) \\
& \qquad=\frac{R(R+1) \ldots\left(R+n_{1}-1\right) \times B(B+1) \ldots\left(B+n_{2}-1\right)}{(B+R)(B+R+1) \ldots(B+R+n-1)} .
\end{aligned}
$$

In this exercise, you will prove the following theorem
Theorem 1 The probability of the sequence X_{1}, \ldots, X_{n} draws from the Poly Urn with initially R red and B blue can equivalently be calculated by first drawing $p \sim \beta(R, B)$ and then choosing X_{i} iid with distribution $B e(p)$.

Here $\beta(R, B)$ is the probability distribution on $[0,1]$ that has the probability density function $\frac{1}{Z} x^{R-1}(1-x)^{B-1}$, where $Z=\int_{0}^{1} x^{R-1}(1-x)^{B-1}$.

1. Let A and B non-negative integers. Use integration by parts to calculate the integral

$$
\int_{0}^{1} x^{A}(1-x)^{B} d x
$$

2. Let R, B, n_{1} and n_{2} be non-negative integers, and assume that $X \sim \beta(A, B)$. Calculate first the normalization factor $Z=\int_{0}^{1} x^{R-1}(1-x)^{B-1}$ for the β-distribution, and then the expectation of $X^{n_{1}}(1-X)^{n_{2}}$.

3 . Use the result from 2 to prove the theorem.

2 Degrees for preferential attachment

[7 Points]
Let D_{n} be the degree of a random vertex in the preferential attachment graph on n nodes (note that it has two sources of randomness - the randomness from choosing a vertex, and that of the preferential attachment graph). For the various version of preferential attachment discussed in the lectures (independent, conditional, and sequential), the random variable D_{n} converges in distribution to a random variable D whose distribution is given by

$$
\operatorname{Pr}(D=k)=\frac{2 m(m+1)}{k(k+1)(k+2)}
$$

A different way of obtaining the distribution of D proceeds by proving that Preferential attachment has a weak local limit, and then establishing the degree distribution for the root of the limiting rooted graph. In that approach, the variable D appears naturally as a sum of m and a mixed Poisson random variable q :

$$
D=m+q \quad \text { where } \quad q \sim \operatorname{Poi}\left(\gamma \frac{1-x}{x}\right)
$$

where $\gamma \sim \Gamma(m, 1)$ and $x=\sqrt{u}$ with u being a uniform random variable in $[0,1]$. In this exercise, you will prove that the two are indeed equivalent.

1. Let A be a non-negative integer. Use integration by parts to calculate the integral

$$
\int_{0}^{\infty} x^{A} e^{-x} d x
$$

2. Let A and k be non-negative integers, and let $c>-1$. A random variable X has distribution $\Gamma(A, 1)$ if its probability density function is equal to $\frac{1}{Z} x^{A-1} e^{-x}$, where Z is a normalization constant. Calculate first Z, and then the expectation of $X^{k} e^{-c X}$.
3. Calculate the probability that the random variable q above takes the value k, conditioned on γ and x.
4. By first taking expectation with respect to the random variable γ, and then with respect to $u=x^{2}$, get the probability that $q=k$.
5. Relate this result to the explicit formula given above and show that the two give the same probability distribution.

3 Infection digraph

[6 Points]

Recall that the exponential distribution with rate γ is the probability distribution on \mathbb{R}_{+} with density $\rho(T)=\gamma e^{-\gamma T}$.

For a graph G, recovery rate γ and infection rate τ, the infection digraph of an SIR model on G is determined as follows: for all vertices i, draw a recovery clock $T_{i} \sim \exp (\gamma)$ and for all edges $\{i, j\}$ in $E(G)$ draw two infection clocks $T_{i j} \sim \exp (\tau)$ and $T_{j i} \sim \exp (\tau)$, all independently of each other. The infection digraph $D_{S I R}$ is then defined by putting an oriented edge $i j$ from i to j whenever $\{i, j\}$ is an edge in G and $T_{i j} \leq T_{i}$. We set $X_{i j}=1$ if this is the case, and $X_{i j}=0$ otherwise. Note that the random variables $X_{i j}$ are independent if we condition on the recovery times $\left\{T_{i}\right\}_{i \in V(G)}$.

1. Let $p_{T}=1-e^{-\tau T}$. Use elementary calculations involving the exponential distribution $\exp (\tau)$ to show that conditioned on the recovery times, $X_{i j} \sim \operatorname{Be}\left(p_{T_{i}}\right)$ whenever $\{i, j\}$ is an edge in G.
2. For a vertex i, let $N(i)$ be the set of neighbors of i in G. Show that for a vertex i of degree d_{i} in G, the in-degree in $D_{S I R}, d_{i}^{-}=\sum_{j \in N(i)} X_{j i}$, has distribution $\operatorname{Bin}\left(d_{i}, p\right)$, where $p=\frac{\tau}{\gamma+\tau}$. Write down the generating function $G_{i}^{-}(\eta)$ for the random variable d_{i}^{-}.
3. Show that conditioned on T_{i}, the out-degree of i in $D_{S I R}, d_{i}^{+}=\sum_{j \in N(i)} X_{i j}$, has distribution $\operatorname{Bin}\left(d_{i}, p_{T_{i}}\right)$. Write down the generating function $G_{i}^{+}\left(\eta \mid T_{i}\right)$ for the random variable d_{i}^{+}conditioned on T_{i}.
Note that the generating function of the unconditioned random variable d_{i}^{+}is just the expectation of $G_{i}^{+}\left(\eta \mid T_{i}\right)$ with respect to T_{i},

$$
G_{i}^{+}(\eta)=\gamma \int G_{i}^{+}(\eta \mid T) e^{-\gamma T} d T
$$

(this is just an observation, you don't need to simplify this further for the moment).
4. Specializing to $G=K_{n}$ and $\tau=\beta / n$, calculate $G^{-}(\eta)$ and $G^{+}\left(\eta \mid T_{i}\right)$ in the limit $n \rightarrow \infty$ (if you don't make a mistake, you should get the generating functions of two Poisson random variables; also, since K_{n} is regular, the result will not depend on i, so we dropped the index i). What are the rates c^{-}and $c^{+}\left(T_{i}\right)$ of these two Poisson random variables?
5. Using the above, it is easy to calculate the generating function G^{+}of the unconditioned out-degree d_{i}^{+}, since by dominated convergence it converges to the expectation of the limit you just calculated. Calculate this expectation, and express the limiting generating function of d_{i}^{+}as an explicit function of $R_{0}=\beta / \gamma$ and η. Compare the expression you get to that of a geometric random variable.
6. (Bonus) Explicitly solve the equation $\theta+G^{+}(1-\theta)=1$ for the survival probability θ of a birth process with off spring distribution d^{+}(in the limit $n \rightarrow \infty$, where, as discussed in class, it is the survival probability of the infection). Compare the results to those obtain from G^{-}, both for $R_{0}=1+\epsilon$ for small ϵ (in which case I'd like you to to compare the rate at which $\theta \rightarrow 0$ as $\epsilon \rightarrow 0$) as well as for large R_{0} (in which case I'd like you to compare the rate at which $\eta=1-\theta \rightarrow 0$ as $\left.R_{0} \rightarrow \infty\right)$.

