CS294-179 Network Structure and Epidemics
Fall 2020

Homework #5
Due Mo, Nov. 9

1 Polya Urn
[5 Points]

Recall that a polya urn with R initial red, and B initial blue balls is a process where R and
B are updated according to the following rule:

e Set Ry = R and Bp =B

e At time ¢, draw a random ball from all B; + R; balls, and raise the R; by one if the ball
is red - otherwise raise By by one. Denote the new number of red balls by R;;; and the
new number of blue balls by Byy.

Set X; = 1 if the ball drawn at time ¢ is red, and X; = 0 otherwise. Fix a set Ip C [n] and
it’s complement, Ig. We have seen that the probability of drawing a sequence X, ..., X, such
that X; = 1 for ¢ € Ig and X; = 0 for ¢« € I does only depend on the sizes ny and ny of I
and Iy and is equal to

Pr(Xizlforie]R and Xi:0forieIB)

R(R+1)...(R+mn1—1)xB(B+1)...(B+ny—1)
(B+R)(B+R+1)...(B+R+n—-1) ’

In this exercise, you will prove the following theorem

Theorem 1 The probability of the sequence X1, ..., X, draws from the Poly Urn with initially
R red and B blue can equivalently be calculated by first drawing p ~ B(R, B) and then choosing
X, iid with distribution Be(p).

Here S(R, B) is the probability distribution on [0, 1] that has the probability density function
Laf=1(1 — )81, where Z = fol 211 — 2)B-L,

1. Let A and B non-negative integers. Use integration by parts to calculate the integral
1
/ 241 — z)Pda.
0

2. Let R, B, ny1 and ny be non-negative integers, and assume that X ~ (A, B). Calculate
first the normalization factor Z = fol 2f=1(1 —2)B~1! for the S-distribution, and then the
expectation of X" (1 — X)"2.

3. Use the result from |2 to prove the theorem.



2 Degrees for preferential attachment
[7 Points]

Let D,, be the degree of a random vertex in the preferential attachment graph on n nodes
(note that it has two sources of randomness - the randomness from choosing a vertex, and
that of the preferential attachment graph). For the various version of preferential attachment
discussed in the lectures (independent, conditional, and sequential), the random variable D,
converges in distribution to a random variable D whose distribution is given by

2m(m + 1)

PrD = k) = o D1 3

A different way of obtaining the distribution of D proceeds by proving that Preferential attach-
ment has a weak local limit, and then establishing the degree distribution for the root of the
limiting rooted graph. In that approach, the variable D appears naturally as a sum of m and
a mixed Poisson random variable g:

1—
D =m+gq where qNPoi(’yJ)
x

where v ~ T'(m,1) and = /u with u being a uniform random variable in [0,1]. In this
exercise, you will prove that the two are indeed equivalent.

1. Let A be a non-negative integer. Use integration by parts to calculate the integral

o0
/ e dx
0

2. Let A and k be non-negative integers, and let ¢ > —1. A random variable X has dis-
tribution T'(A, 1) if its probability density function is equal to %m"‘_le_’, where Z is a

normalization constant. Calculate first Z, and then the expectation of X*e=¢X.

3. Calculate the probability that the random variable g above takes the value k, conditioned
on v and x.

4. By first taking expectation with respect to the random variable ~, and then with respect
to u = 2, get the probability that ¢ = k.

5. Relate this result to the explicit formula given above and show that the two give the same
probability distribution.



3 Infection digraph
[6 Points]

Recall that the exponential distribution with rate v is the probability distribution on R
with density p(T) = ve 7.

For a graph G, recovery rate v and infection rate 7, the infection digraph of an SIR model
on G is determined as follows: for all vertices i, draw a recovery clock T; ~ exp(y) and for all
edges {i, j} in E(G) draw two infection clocks T;; ~ exp(7) and Tj; ~ exp(7), all independently
of each other. The infection digraph Dgrg is then defined by putting an oriented edge ij from
i to j whenever {7,j} is an edge in G and T}; < T;. We set X;; = 1 if this is the case, and
X;; = 0 otherwise. Note that the random variables X;; are independent if we condition on the
recovery times {71} };cv (q)-

1.

Let pr = 1 — e~ 77, Use elementary calculations involving the exponential distribution
exp(T) to show that conditioned on the recovery times, X;; ~ Be(pr,) whenever {i, j} is
an edge in G.

For a vertex 4, let N(i) be the set of neighbors of ¢ in G. Show that for a vertex i of
degree d; in G, the in-degree in Dgrg, d; = ZjGN(i) Xji, has distribution Bin(d;,p),

*—. Write down the generating function G; (n) for the random variable d; .

where p = P

Show that conditioned on T, the out-degree of ¢ in Dgypg, d;“ = ZjeN(i) Xij, has distribu-

tion Bin(d;,pr,). Write down the generating function G (n|T;) for the random variable
d; conditioned on Tj.

Note that the generating function of the unconditioned random variable dj is just the
expectation of G (n|T;) with respect to T3,

GH )= [ G Ty Tar,
(this is just an observation, you don’t need to simplify this further for the moment).

Specializing to G = K,, and 7 = 3/n, calculate G~ (n) and G*(n|T;) in the limit n — oo
(if you don’t make a mistake, you should get the generating functions of two Poisson
random variables; also, since K, is regular, the result will not depend on 4, so we dropped
the index 7). What are the rates ¢~ and ¢*(7}) of these two Poisson random variables?

. Using the above, it is easy to calculate the generating function G* of the unconditioned

out-degree d;r, since by dominated convergence it converges to the expectation of the
limit you just calculated. Calculate this expectation, and express the limiting generating
function of dj' as an explicit function of Ry = 8/~ and 1. Compare the expression you

get to that of a geometric random variable.

(Bonus) Explicitly solve the equation § +G*(1—6) = 1 for the survival probability 6 of a
birth process with off spring distribution d* (in the limit n — oo, where, as discussed in
class, it is the survival probability of the infection). Compare the results to those obtain
from G, both for Ry = 1+ ¢ for small € (in which case I'd like you to to compare the rate
at which 6 — 0 as ¢ — 0) as well as for large Ry (in which case I’d like you to compare
the rate at whichn=1—-60 — 0 as Ry — o0).
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