
CS294-179, Spring 2025
Homework #5, Due 4/11

1 Cut-Norm and Approximation by Step-functions [6 Points]

Recall that given a function W : [0, 1]2 → ℜ and a partition P = (Y1, . . . , Yk) of [0, 1] into disjoint sets, we
define WP as the step-function which is equal to βij =

1
|Yi||Yj |

∫
Yi×Yj

W on Yi ×Yj . Also recall the definition

of the cut-norm, ∥W∥□ = supS,T⊂[0,1]

∣∣∣ ∫S×T
W

∣∣∣. We say that U is a step function on P ×P if U is constant

on all sets of the form Y × Y ′ with Y, Y ′ ∈ P .

a) Show that the map W 7→ WP is a contraction with respect to the L2 norm, i.e., show that

∥WP ∥2 ≤ ∥W∥2.

Hint: Consider ∥W −WP ∥22 and then use that
∫
WPW =

∫
W 2

P .

b) Show that in the L2-norm, the step function WP is the best possible step-function approximation to W
on P × P , i.e., show that

∥W −WP ∥2 ≤ ∥W − U∥2 for all step functions U on P × P .

c) Show that when calculating the cut-norm of ∥WP ∥□, you can restrict yourself to sets S and T which are
unions of classes in P , i.e., show that

∥WP ∥□ = max
S,T∈σ(P )

∣∣∣∣∫
S×T

W

∣∣∣∣ ,
where σ(P ) is the set of subsets S ⊂ [0, 1] of the form S = ∪i∈IYi for some I ⊂ [k]. Hint: Consider a
fixed set T , and the function fT (x) =

∫
T
dyWP (x, y) and let S± be the sets where f < 0 and f > 0,

respectively. Show that for all S ⊂ [0, 1],∣∣∣∣∫
S

fT (x)

∣∣∣∣ ≤ max

{∫
S+

fT ,−
∫
S−

fT

}

to prove that S can be chosen in σ(P ). After that, fix S ∈ σ(P ) and repeat the argument for T .

d) Use (c)) to show that the map W 7→ WP is a contraction with respect to the cut-norm, i.e., show that

∥WP ∥□ ≤ ∥W∥□.

e) Use (d) and the triangle inequality to prove that up to a factor of two, the step function WP is the best
possible step-function approximation to W on P × P with respect to the cut-norm:

∥W −WP ∥□ ≤ 2∥W − U∥□ for all step functions U on P × P .

Hint: Use that UP = U .

2 Concentration once more [4 Points]

We will need the following generalization of the Chernoff bound for i.i.d. Bernoulli random variables: Let
X1, . . . , XN independent r.v. with Xi ∼ Be(pi) and let ni ∈ {0, 1, 2} be non-random.

a) Prove that

Pr
(∑

i

ni(Xi − pi) ≥ 2δ
∑
i

pi

)
≤ e−

δ2

2δ+2

∑
i pi .

Hint: Bound E[etni(Xi−pi)] by exp((enit − 1)pi − tnipi) ≤ exp((e2t − 1− 2t)pi).
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b) In a similar way, show that

Pr
(∑

i

ni(Xi − pi) ≤ −2δ
∑
i

pi

)
≤ e−

δ2

2

∑
i pi .

c) Use these two bounds to show that

Pr
(∣∣∣∑

i

ni(Xi − pi)
∣∣∣ ≥ 2ϵN

)
≤ 2e−

ϵ2

4 N .

Hint: For ϵ > 1, the bound is trivial (why?), so you may assume without loss of generality that ϵ ≤ 1.

3 G(n, p) converges to W ≡ p [3 Points + 1 Bonus Point]

Recall that the empirical graphon of a graph with n × n adjacency matrix A (or more general, any n × n
matrix A) is defined as

WA(x, y) =

n∑
i,j=1

AijIx∈Ii,y∈Ij

where I1, . . . , In is a partition of [0, 1] into adjacent intervals of width 1/n, and IB is the indicator function
that the event B happening, i.e., it is one if B holds, and 0 otherwise.

(a) [1 Point] Use the results from Problem 1), part (c) to conclude that for any matrix with real valued
entries, the cut-norm of WA is a maximum over a finite number of sets:

∥WA∥□ := sup
U,V⊂[0,1]

∣∣∣∣∫
U×V

WA

∣∣∣∣ = 1

n2
max

S,T⊂[n]

∣∣∣∣∣∣∣
∑
i∈U
j∈V

Aij

∣∣∣∣∣∣∣ .
Apply this to the case where A is the adjacency matrix of G(n, p), and use the above expression to
express ∥WA − P∥□ (where P is the constant function that assigns p to (x, y) ∈ [0, 1]2) as

∥WA − P∥□ =
1

n2
max

S,T⊂[n]

∣∣∣∣∣∣∣
∑
i∈S
j∈T

(Aij − p)

∣∣∣∣∣∣∣ =
1

n2
max

S,T⊂[n]

∣∣∣∣∣∣∣−p|S ∩ T |+
∑

i∈S,j∈T
i̸=j

(Aij − p)

∣∣∣∣∣∣∣
(b) [2 Points]: Calculate the expectation of the sums for fixed S and T , and then use the Chernoff bound

from Problem 2 part(c) (with N =
(
n
2

)
and pi = p) to bound the probability that this sum is larger than

ϵn2 in absolute value. Use a union bound to prove that G(n, p) converges to the constant graphon P in
probability.

(c) [1 Bonus Point]: Consider now the case of sparse random graphs, i.e., the case that p = pn → 0. Show
that if it does not go to zero too fast, you get that ∥ 1

pn
WA − 1∥□ → 0 in probability. How sparse can

your graphs be? Can you do pn = 1/log n, or pn = 1/
√
n. What prevents you from choosing p = c/n?

4 Graph Limit of Chung-Lu Model [5 Points]

In this exercise, we consider a dense version of the Chung-Lu Model, defined in terms of a function w :
[0, 1] → [0, 1]. In this model, we first draw x1, . . . , xn iid uniformly at random in [0, 1], and then connect
i < j with probability

Pij = w(xi)w(xj),

giving a graph Gn with adjacency matrix Aij = Aji ∼ Be(Pij), independently for all i < j. In this exercise,
you will show that the sequence Gn converges to the graphon

W (x, y) = w(x)w(y)

in the cut-metric δ□.
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(a) [2 Points]: Proceed as in the previous problem to show that

∥WA −WP ∥□ → 0 in probability,

where P is the matrix with entries Pij . Hint: the proof is identical, except that when using the bound
(c) from Problem 2, the probabilities pi now become the probabilities Pij rather than the constant p.

(b) Specialize now to the case where w is a step function,

w(x) =

K∑
k=1

αkIJk
where Jk = [(k − 1)/K, k/K),

choose x1, . . . , xn ∈ [0, 1] i.i.d. uniformly at random, and order them such that x1 < x2 < · · · < xn.
Defining P̃ to be the matrix P after the reordering is applied, we note that

WP̃ (x, y) = w̃(x)w̃(y) where w̃(x) =

K∑
k=1

αkIJ̃k
,

with J̃k being the union of the intervals Ii = [(i− 1)/n, i/n) for all i such that xi ∈ Jk.

(i) [1 Point] Let Nk be the number of points xi such that xi ∈ Jk. Calculate the expectation and
variance of Nk, and use this to prove that as n → ∞,

ϵk = max
k

∣∣∣|J̃k| − |Jk|
∣∣∣ → 0 in probability.

(ii) [1 Point] Bound the L1 distance of w and w̃ in terms of ϵk and use this to prove that

∥WP̃ −W∥□ ≤ ∥WP̃ −W∥1 → 0 in probability.

(iii) [1 Point] Show that there is an interval permutation ϕ : [0, 1] → [0, 1] such that Wϕ
P = WP̃ and use

what you have shown so far to prove that for the case of step-functions, Gn converges to W in the
cut-metric.

(c) The general case can be reduced to the case of step-functions by noting that any bounded, measurable
function can be approximated by step functions. We won’t do this here - see, however, the bonus problem
below, where we address this problem in a more general context.

5 Inhomogneous random graphs converge to the generating graphon
[6 Bonus Points]

Recall that a graphon is a symmetric function from [0, 1]2 into [0, 1], i.e., a function W : [0, 1]2 → [0, 1] such
that W (x, y) = W (y, x). We define the sequence Gn(W ) of inhomogeneous random graphs generated by W
as follows:

1. Choose x1, . . . , xn i.i.d. uniformly at random from [0, 1], and define a matrix P (n) = P (n)(W ) ∈ [0, 1]n×n

by setting P
(n)
ij = W (xi, xj).

2. The graph Gn(W ) on [n] is then defined by choosing, independently for all i < j, an edge ij with

probability P
(n)
ij .

In this exercise, we will prove the following theorem, which implies that δ□

(
Gn(W ),W

)
→ 0 in probability.

Theorem 1.1 If W is a graphon, then

E
[
δ□

(
Gn(W ),W

)]
→ 0.
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The theorem relies on two lemmas, which we will prove separately.

Lemma 1.1 There exists a constant D < ∞, such that if P ∈ [0, 1]n×n is a symmetric matrix with empty
diagonal, and A ∈ {0, 1}n×n is the random, symmetric matrix with empty diagonal obtained from P by
setting Aij = Aji = 1 with probability Pij, independently for all i < j, then

Pr(∥WA −WP ∥□ ≥ D/n) ≤ 2e−n.

As a consequence
E[∥WA −WP ∥□] ≤ D/n+ 2e−n.

To state the second lemma, for an n× n matrices A and a graphon W , we define

δ̂1(A,W ) = min
σ

∥W −WAσ∥1,

where the min is taken over all permutations of [n], and Aσ
ij = Aσ(i),σ(j). Since such a permutation is an

interval permutation, and since the cut-norm is bounded by the L1 norm, we clearly have that δ□(WA,W ) ≤
δ̂1(WA,W ).

Lemma 1.2 For all symmetric W : [0, 1]2 → [0, 1], define P (n) = P (n)(W ) to be the n × n random matrix

with entries P
(n)
ij = W (xi, xj), where x1, . . . , xn are chosen iid uniformly at random in [0, 1]. Then

E
[
δ̂1

(
P (n),W

)]
→ 0.

(a) Use the Chernoff bound from Exercise 2 to prove Lemma 1.1. Hint: at this point the proof is a one-line
argument, since you have already done the necessary estimate when solving Part (a) of Problem 4, since
the precise form for Pij never entered your proof. [1 Bonus Point]

(b) Prove Lemma 1.2 for step functions. More precisely, let Qk be the partition of [0, 1] into k intervals
of length 1/k, and prove Lemma 1.2 for functions W which are constant on sets of the form Y × Y ′,
Y, Y ′ ∈ Qk. [1 Bonus Point]

� Hint: Reorder x1, . . . , xn in such a way that x1 < x2 < · · · < xn, and use that for n ≫ k, the
fraction of variables xi that fall into the ith interval of the partition Qk is concentrated around 1/k.
Determine how large n has to be (as a function of k), to get enough concentration to imply that

E
[
δ̂1(P

(n)(W ),W )
]
→ 0.

(c) Reduce Lemma 1.2 to the case where W is a step function. To this end, use the following approximation
to the graphon W : the function WQk

obtained by averaging W over the blocks Y ×Y ′, where Y and Y ′

are classes in Qk.

� Prove that for any two graphons U,W ,

1

n2
E[

∑
i ̸=j

|P (n)
ij (U)− P

(n)
ij (W )| = n− 1

n
∥U −W∥1.

� Use the fact that ∥WQk
−W∥1 → 0 to reduce the proof of Lemma 1.2 to the case analyzed under

b. (For people familiar with measure theory: you can use the Lebesgue differentiation theorem to
prove almost sure convergence, which implies L1 convergence. You are not asked to prove this fact
- you can just use it). [3 Bonus Points]

(d) Prove Theorem 1.1 from Lemmas 1.1 and 1.2. [1 Bonus Point]
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