
CS294-179 Network Structure and Epidemics
Fall 2020

Homework #5
Due Mo, Nov. 9

1 Polya Urn
[5 Points]

Recall that a polya urn with R initial red, and B initial blue balls is a process where R and
B are updated according to the following rule:

� Set R0 = R and B0 = B

� At time t, draw a random ball from all Bt +Rt balls, and raise the Rt by one if the ball
is red - otherwise raise Bt by one. Denote the new number of red balls by Rt+1 and the
new number of blue balls by Bt+1.

Set Xt = 1 if the ball drawn at time t is red, and Xt = 0 otherwise. Fix a set IR ⊂ [n] and
it’s complement, IB . We have seen that the probability of drawing a sequence X1, . . . , Xn such
that Xi = 1 for i ∈ IR and Xi = 0 for i ∈ IB does only depend on the sizes n1 and n2 of I1
and I2 and is equal to

Pr
(
Xi = 1 for i ∈ IR and Xi = 0 for i ∈ IB

)
=
R(R+ 1) . . . (R+ n1 − 1)×B(B + 1) . . . (B + n2 − 1)

(B +R)(B +R+ 1) . . . (B +R+n− 1)
.

In this exercise, you will prove the following theorem

Theorem 1 The probability of the sequence X1, . . . , Xn draws from the Poly Urn with initially
R red and B blue can equivalently be calculated by first drawing p ∼ β(R,B) and then choosing
Xi iid with distribution Be(p).

Here β(R,B) is the probability distribution on [0, 1] that has the probability density function
1
Zx

R−1(1− x)B−1, where Z =
∫ 1

0
xR−1(1− x)B−1.

1. Let A and B non-negative integers. Use integration by parts to calculate the integral∫ 1

0

xA(1− x)Bdx.

2. Let R, B, n1 and n2 be non-negative integers, and assume that X ∼ β(A,B). Calculate

first the normalization factor Z =
∫ 1

0
xR−1(1−x)B−1 for the β-distribution, and then the

expectation of Xn1(1−X)n2 .

3. Use the result from 2 to prove the theorem.
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2 Degrees for preferential attachment
[7 Points]

Let Dn be the degree of a random vertex in the preferential attachment graph on n nodes
(note that it has two sources of randomness - the randomness from choosing a vertex, and
that of the preferential attachment graph). For the various version of preferential attachment
discussed in the lectures (independent, conditional, and sequential), the random variable Dn

converges in distribution to a random variable D whose distribution is given by

Pr(D = k) =
2m(m+ 1)

k(k + 1)(k + 2)
.

A different way of obtaining the distribution of D proceeds by proving that Preferential attach-
ment has a weak local limit, and then establishing the degree distribution for the root of the
limiting rooted graph. In that approach, the variable D appears naturally as a sum of m and
a mixed Poisson random variable q:

D = m+ q where q ∼ Poi(γ 1− x
x

)

where γ ∼ Γ(m, 1) and x =
√
u with u being a uniform random variable in [0, 1]. In this

exercise, you will prove that the two are indeed equivalent.

1. Let A be a non-negative integer. Use integration by parts to calculate the integral∫ ∞
0

xAe−xdx

2. Let A and k be non-negative integers, and let c > −1. A random variable X has dis-
tribution Γ(A, 1) if its probability density function is equal to 1

Zx
A−1e−x, where Z is a

normalization constant. Calculate first Z, and then the expectation of Xke−cX .

3. Calculate the probability that the random variable q above takes the value k, conditioned
on γ and x.

4. By first taking expectation with respect to the random variable γ, and then with respect
to u = x2, get the probability that q = k.

5. Relate this result to the explicit formula given above and show that the two give the same
probability distribution.
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3 Infection digraph
[6 Points]

Recall that the exponential distribution with rate γ is the probability distribution on R+

with density ρ(T ) = γe−γT .
For a graph G, recovery rate γ and infection rate τ , the infection digraph of an SIR model

on G is determined as follows: for all vertices i, draw a recovery clock Ti ∼ exp(γ) and for all
edges {i, j} in E(G) draw two infection clocks Tij ∼ exp(τ) and Tji ∼ exp(τ), all independently
of each other. The infection digraph DSIR is then defined by putting an oriented edge ij from
i to j whenever {i, j} is an edge in G and Tij ≤ Ti. We set Xij = 1 if this is the case, and
Xij = 0 otherwise. Note that the random variables Xij are independent if we condition on the
recovery times {Ti}i∈V (G).

1. Let pT = 1 − e−τT . Use elementary calculations involving the exponential distribution
exp(τ) to show that conditioned on the recovery times, Xij ∼ Be(pTi) whenever {i, j} is
an edge in G.

2. For a vertex i, let N(i) be the set of neighbors of i in G. Show that for a vertex i of
degree di in G, the in-degree in DSIR, d−i =

∑
j∈N(i)Xji, has distribution Bin(di, p),

where p = τ
γ+τ . Write down the generating function G−i (η) for the random variable d−i .

3. Show that conditioned on Ti, the out-degree of i in DSIR, d+i =
∑
j∈N(i)Xij , has distribu-

tion Bin(di, pTi). Write down the generating function G+
i (η|Ti) for the random variable

d+i conditioned on Ti.

Note that the generating function of the unconditioned random variable d+i is just the
expectation of G+

i (η|Ti) with respect to Ti,

G+
i (η) = γ

∫
G+
i (η|T )e−γT dT.

(this is just an observation, you don’t need to simplify this further for the moment).

4. Specializing to G = Kn and τ = β/n, calculate G−(η) and G+(η|Ti) in the limit n→∞
(if you don’t make a mistake, you should get the generating functions of two Poisson
random variables; also, since Kn is regular, the result will not depend on i, so we dropped
the index i). What are the rates c− and c+(Ti) of these two Poisson random variables?

5. Using the above, it is easy to calculate the generating function G+ of the unconditioned
out-degree d+i , since by dominated convergence it converges to the expectation of the
limit you just calculated. Calculate this expectation, and express the limiting generating
function of d+i as an explicit function of R0 = β/γ and η. Compare the expression you
get to that of a geometric random variable.

6. (Bonus) Explicitly solve the equation θ+G+(1−θ) = 1 for the survival probability θ of a
birth process with off spring distribution d+ (in the limit n→∞, where, as discussed in
class, it is the survival probability of the infection). Compare the results to those obtain
from G−, both for R0 = 1+ε for small ε (in which case I’d like you to to compare the rate
at which θ → 0 as ε → 0) as well as for large R0 (in which case I’d like you to compare
the rate at which η = 1− θ → 0 as R0 →∞).
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