
CS294-179 Network Structure and Epidemics
Fall 2020

Homework #4
Due Fr. 10/23

Each of the following exercises is worth 9 points. Choose 2, or try all 3, and the one where
you get the least number of points will be a bonus exercise.

1 Convergence to Poisson

For two random variables X,Y defined over the same, discrete space Ω, the total variation
distance, can be equivalently be defined as

dTV (X,Y ) = sup
A⊂Ω
|Pr(X ∈ A)− Pr(Y ∈ A)|

dTV (X,Y ) =
1

2

∑
x∈Ω

|Pr(X = i)− Pr(Y = i)|

and
dTV (X,Y ) = inf

P
P(X 6= Y )

where the infimum goes over couplings of X and Y .

1. Use the second definition above, to show that if X ∼ Be(p) and Y ∼ Poi(p), then
dTV (X,Y ) ≤ p2. (If you don’t quite get this, but a bound O(p2) for small p, that is fine
as well).

2. Recalling that the sum of n Poi(p) random variables has the distribution Poi(np), use
the result of (1) to show that dTV (Bin(n, p), Poi(np)) ≤ np2.

3. Use (2) to prove that the degree distribution of G(n, p) with p = c/n for a constant c
converges to Poi(c) in the distance dTV .

4. Consider the following version of the stochastic block model with k blocks and symmetric
similarity matrix B = Bαβ : For each vertex i = 1, . . . , n, chose a color αi ∈ [k] i.i.d. uni-
formly at random, and then connect i and j with probability pij = 1

nBαiαj
, independently

for all
(
n
2

)
pairs {i, j}.

� Condition on the color of vertex 1 to be α, and write the degree d1 of vertex 1 as
sum of the form

∑n
j=2Xj , where Xj takes values in {0, 1}.

� Show that the Xj are i.i.d., calculate their expectation, and use this to write d1

as Bin(n − 1, p̃) for some p̃ = c̃/n. Hint: if X takes values 0 and 1, even if it’s
distribution looks very complicated, we know abstractly that it has some probability
p′ of being 1, and must then be 0 with probability 1−p′. Thus we know its complicated
distribution can be written as Be(p′) for some p′; in addition, p′ must be equal to
E[X].

� Use (2) to calculate the limiting distribution of d1 as n→∞.
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2 Graphical Sequences

A sequence d1, d2, . . . , dn of non-negative integers is called graphical if it is a degree sequence of
a simple graph of size n. In this question we prove the following theorem by Havel and Hakimi.

Theorem 1 (Havel-Hakimi) Let D be the sequence n − 1 ≥ d1 ≥ d2 ≥ . . . ≥ dn > 0 and
n ≥ 2. Let D′ be the sequence obtained from D by discarding d1, and, subtracting 1 from each
of the next largest d1 entries of D and then keeping the positive integers. So, D′ is the sequence
(d2 − 1, . . . dd1+1 − 1, dd1+2, . . . dn) after deleting all the zeros. The sequence D is graphical if
and only if D′ is graphical.

1. First prove that if D′ is graphical then D is graphical.

2. Next, assume D is graphical and let G be a graph with vertices v1, . . . , vn and degree
sequence D. Assume first v1 is connected to all vertices vi with 2 ≤ i ≤ d1 + 1. Show
that under this condition, the sequence D′ is graphical, i.e., construct a graph G′ with
the sequence D′.

3. Now assume that the condition in 2 is not satisfied, i.e., assume that there exists a vertex
vi with 2 ≤ i ≤ d1 + 1 that is not connected to v1. Show that there is a vertex vj with
j > d1 + 1 that is connected to v1.

4. With part 3’s notations, show that one can remove two edges from G and add two other
edges to obtain another simple graph G̃, in which v1 is connected to vi but not vj .

5. Show that by using the procedure described in 3 and 4 a finite number of times, you must
end up in case 2 to prove the theorem.

3 Your friends have more friends than you do

For a graph G and a vertex i in V (G), let d∗i be the average degree of the neighbors of i, and
let d∗(G) to be the average of d∗i over all vertices i. We will compare it to d̄(G), the average
degree of G.

1. Let Sn be the star with n leaves, i.e., let the graph where one vertex, the center, is
connected to n others, the leaves, and no other edges. Find d∗(Sn) and d̄(Sn) as a
function of n.

2. Let H be a graph that is the disjoint union of a triangle and an isolated edge. Compute
d̄(H) and d∗(H).

3. Prove that for any graph G, d∗(G) ≥ d̄(G).

Hint: as an intermediate step you might want to prove that di
dj

+
dj
di
≥ 2 and the equality

holds when di = dj.

4. Characterize graphs for which the equality happens in part 3 (d̄(G) = d∗(G)).

5. Express the statement “All your friends have exactly as many friends as you do” in
mathematical terms, and prove it for the case that d̄(G) = d∗(G).
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