CS294-179 Network Structure and Epidemics Fall 2020

Homework #4 Due Fr. 10/23

Each of the following exercises is worth 9 points. Choose 2, or try all 3, and the one where you get the least number of points will be a bonus exercise.

1 Convergence to Poisson

For two random variables X, Y defined over the same, discrete space Ω , the total variation distance, can be equivalently be defined as

$$d_{TV}(X,Y) = \sup_{A \subset \Omega} |\Pr(X \in A) - \Pr(Y \in A)|$$

$$d_{TV}(X,Y) = \frac{1}{2} \sum_{x \in \Omega} |\Pr(X=i) - \Pr(Y=i)|$$

and

$$d_{TV}(X,Y) = \inf_{\mathbb{P}} \mathbb{P}(X \neq Y)$$

where the infimum goes over couplings of X and Y.

- 1. Use the second definition above, to show that if $X \sim Be(p)$ and $Y \sim Poi(p)$, then $d_{TV}(X,Y) \leq p^2$. (If you don't quite get this, but a bound $O(p^2)$ for small p, that is fine as well).
- 2. Recalling that the sum of n Poi(p) random variables has the distribution Poi(np), use the result of (1) to show that $d_{TV}(Bin(n,p), Poi(np)) \leq np^2$.
- 3. Use (2) to prove that the degree distribution of G(n,p) with p=c/n for a constant c converges to Poi(c) in the distance d_{TV} .
- 4. Consider the following version of the stochastic block model with k blocks and symmetric similarity matrix $B = B_{\alpha\beta}$: For each vertex $i = 1, \ldots, n$, chose a color $\alpha_i \in [k]$ i.i.d. uniformly at random, and then connect i and j with probability $p_{ij} = \frac{1}{n} B_{\alpha_i \alpha_j}$, independently for all $\binom{n}{2}$ pairs $\{i, j\}$.
 - Condition on the color of vertex 1 to be α , and write the degree d_1 of vertex 1 as sum of the form $\sum_{j=2}^{n} X_j$, where X_j takes values in $\{0,1\}$.
 - Show that the X_j are i.i.d., calculate their expectation, and use this to write d_1 as $Bin(n-1,\tilde{p})$ for some $\tilde{p}=\tilde{c}/n$. Hint: if X takes values 0 and 1, even if it's distribution looks very complicated, we know abstractly that it has some probability p' of being 1, and must then be 0 with probability 1-p'. Thus we know its complicated distribution can be written as Be(p') for some p'; in addition, p' must be equal to $\mathbb{E}[X]$.
 - Use (2) to calculate the limiting distribution of d_1 as $n \to \infty$.

2 Graphical Sequences

A sequence d_1, d_2, \ldots, d_n of non-negative integers is called graphical if it is a degree sequence of a simple graph of size n. In this question we prove the following theorem by Havel and Hakimi.

Theorem 1 (Havel-Hakimi) Let D be the sequence $n-1 \ge d_1 \ge d_2 \ge ... \ge d_n > 0$ and $n \ge 2$. Let D' be the sequence obtained from D by discarding d_1 , and, subtracting 1 from each of the next largest d_1 entries of D and then keeping the positive integers. So, D' is the sequence $(d_2-1,\ldots d_{d_1+1}-1,d_{d_1+2},\ldots d_n)$ after deleting all the zeros. The sequence D is graphical if and only if D' is graphical.

- 1. First prove that if D' is graphical then D is graphical.
- 2. Next, assume D is graphical and let G be a graph with vertices v_1, \ldots, v_n and degree sequence D. Assume first v_1 is connected to all vertices v_i with $2 \le i \le d_1 + 1$. Show that under this condition, the sequence D' is graphical, i.e., construct a graph G' with the sequence D'.
- 3. Now assume that the condition in 2 is not satisfied, i.e., assume that there exists a vertex v_i with $2 \le i \le d_1 + 1$ that is not connected to v_1 . Show that there is a vertex v_j with $j > d_1 + 1$ that is connected to v_1 .
- 4. With part 3's notations, show that one can remove two edges from G and add two other edges to obtain another **simple** graph \tilde{G} , in which v_1 is connected to v_i but not v_i .
- 5. Show that by using the procedure described in 3 and 4 a finite number of times, you must end up in case 2 to prove the theorem.

3 Your friends have more friends than you do

For a graph G and a vertex i in V(G), let d_i^* be the average degree of the neighbors of i, and let $d^*(G)$ to be the average of d_i^* over all vertices i. We will compare it to $\bar{d}(G)$, the average degree of G.

- 1. Let S_n be the star with n leaves, i.e., let the graph where one vertex, the center, is connected to n others, the leaves, and no other edges. Find $d_*(S_n)$ and $\bar{d}(S_n)$ as a function of n.
- 2. Let H be a graph that is the disjoint union of a triangle and an isolated edge. Compute $\bar{d}(H)$ and $d^*(H)$.
- 3. Prove that for any graph G, $d^*(G) \geq \bar{d}(G)$.

 Hint: as an intermediate step you might want to prove that $\frac{d_i}{d_j} + \frac{d_j}{d_i} \geq 2$ and the equality holds when $d_i = d_j$.
- 4. Characterize graphs for which the equality happens in part 3 $(\bar{d}(G) = d^*(G))$.
- 5. Express the statement "All your friends have exactly as many friends as you do" in mathematical terms, and prove it for the case that $\bar{d}(G) = d^*(G)$.