CS294-179 Network Structure and Epidemics Fall 2020
 Homework \#4
 Due Fr. 10/23

Each of the following exercises is worth 9 points. Choose 2, or try all 3, and the one where you get the least number of points will be a bonus exercise.

1 Convergence to Poisson

For two random variables X, Y defined over the same, discrete space Ω, the total variation distance, can be equivalently be defined as

$$
\begin{aligned}
& d_{T V}(X, Y)=\sup _{A \subset \Omega}|\operatorname{Pr}(X \in A)-\operatorname{Pr}(Y \in A)| \\
& d_{T V}(X, Y)=\frac{1}{2} \sum_{x \in \Omega}|\operatorname{Pr}(X=i)-\operatorname{Pr}(Y=i)|
\end{aligned}
$$

and

$$
d_{T V}(X, Y)=\inf _{\mathbb{P}} \mathbb{P}(X \neq Y)
$$

where the infimum goes over couplings of X and Y.

1. Use the second definition above, to show that if $X \sim \operatorname{Be}(p)$ and $Y \sim \operatorname{Poi}(p)$, then $d_{T V}(X, Y) \leq p^{2}$. (If you don't quite get this, but a bound $O\left(p^{2}\right)$ for small p, that is fine as well).
2. Recalling that the sum of $n \operatorname{Poi}(p)$ random variables has the distribution $\operatorname{Poi}(n p)$, use the result of (1) to show that $d_{T V}(\operatorname{Bin}(n, p), \operatorname{Poi}(n p)) \leq n p^{2}$.
3. Use (2) to prove that the degree distribution of $G(n, p)$ with $p=c / n$ for a constant c converges to $\operatorname{Poi}(c)$ in the distance $d_{T V}$.
4. Consider the following version of the stochastic block model with k blocks and symmetric similarity matrix $B=B_{\alpha \beta}$: For each vertex $i=1, \ldots, n$, chose a color $\alpha_{i} \in[k]$ i.i.d. uniformly at random, and then connect i and j with probability $p_{i j}=\frac{1}{n} B_{\alpha_{i} \alpha_{j}}$, independently for all $\binom{n}{2}$ pairs $\{i, j\}$.

- Condition on the color of vertex 1 to be α, and write the degree d_{1} of vertex 1 as sum of the form $\sum_{j=2}^{n} X_{j}$, where X_{j} takes values in $\{0,1\}$.
- Show that the X_{j} are i.i.d., calculate their expectation, and use this to write d_{1} as $\operatorname{Bin}(n-1, \tilde{p})$ for some $\tilde{p}=\tilde{c} / n$. Hint: if X takes values 0 and 1 , even if it's distribution looks very complicated, we know abstractly that it has some probability p^{\prime} of being 1, and must then be 0 with probability $1-p^{\prime}$. Thus we know its complicated distribution can be written as $B e\left(p^{\prime}\right)$ for some p^{\prime}; in addition, p^{\prime} must be equal to $\mathbb{E}[X]$.
- Use (2) to calculate the limiting distribution of d_{1} as $n \rightarrow \infty$.

2 Graphical Sequences

A sequence $d_{1}, d_{2}, \ldots, d_{n}$ of non-negative integers is called graphical if it is a degree sequence of a simple graph of size n. In this question we prove the following theorem by Havel and Hakimi.
Theorem 1 (Havel-Hakimi) Let D be the sequence $n-1 \geq d_{1} \geq d_{2} \geq \ldots \geq d_{n}>0$ and $n \geq 2$. Let D^{\prime} be the sequence obtained from D by discarding d_{1}, and, subtracting 1 from each of the next largest d_{1} entries of D and then keeping the positive integers. So, D^{\prime} is the sequence $\left(d_{2}-1, \ldots d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots d_{n}\right)$ after deleting all the zeros. The sequence D is graphical if and only if D^{\prime} is graphical.

1. First prove that if D^{\prime} is graphical then D is graphical.
2. Next, assume D is graphical and let G be a graph with vertices v_{1}, \ldots, v_{n} and degree sequence D. Assume first v_{1} is connected to all vertices v_{i} with $2 \leq i \leq d_{1}+1$. Show that under this condition, the sequence D^{\prime} is graphical, i.e., construct a graph G^{\prime} with the sequence D^{\prime}.
3. Now assume that the condition in 2 is not satisfied, i.e., assume that there exists a vertex v_{i} with $2 \leq i \leq d_{1}+1$ that is not connected to v_{1}. Show that there is a vertex v_{j} with $j>d_{1}+1$ that is connected to v_{1}.
4. With part 3 s notations, show that one can remove two edges from G and add two other edges to obtain another simple graph \tilde{G}, in which v_{1} is connected to v_{i} but not v_{j}.
5. Show that by using the procedure described in 3 and 4 a finite number of times, you must end up in case 2 to prove the theorem.

3 Your friends have more friends than you do

For a graph G and a vertex i in $V(G)$, let d_{i}^{*} be the average degree of the neighbors of i, and let $d^{*}(G)$ to be the average of d_{i}^{*} over all vertices i. We will compare it to $\bar{d}(G)$, the average degree of G.

1. Let S_{n} be the star with n leaves, i.e., let the graph where one vertex, the center, is connected to n others, the leaves, and no other edges. Find $d_{*}\left(S_{n}\right)$ and $\bar{d}\left(S_{n}\right)$ as a function of n.
2. Let H be a graph that is the disjoint union of a triangle and an isolated edge. Compute $\bar{d}(H)$ and $d^{*}(H)$.
3. Prove that for any graph $G, d^{*}(G) \geq \bar{d}(G)$.

Hint: as an intermediate step you might want to prove that $\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}} \geq 2$ and the equality holds when $d_{i}=d_{j}$.
4. Characterize graphs for which the equality happens in part $3\left(\bar{d}(G)=d^{*}(G)\right)$.
5. Express the statement "All your friends have exactly as many friends as you do" in mathematical terms, and prove it for the case that $\bar{d}(G)=d^{*}(G)$.

