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Homework 3: Convergence of inhomogeneous
random graphs

1 Concentration once more

We will need the following generalization of the Chernoff bound for i.i.d. Bernoulli
random variables: Let X1, . . . , XN independent r.v. with Xi ∼ Be(pi) and let ni ∈
{0, 1, 2} be non-random.

(a) Prove that

Pr
(∑

i

ni(Xi − pi) ≥ 2δ
∑
i

pi

)
≤ e−

δ2

2δ+2

∑
i pi .

Hint: Bound E[etni(Xi−pi)] by exp((enit − 1)pi − tnipi) ≤ exp((e2t − 1− 2t)pi).

(b) In a similar way, show that

Pr
(∑

i

ni(Xi − pi) ≤ −2δ
∑
i

pi

)
≤ e− δ

2

2

∑
i pi .

2 G(n, p) converges to the constant function p

Recall that the empirical graphon of a graph with n× n adjacency matrix A (or more
general, any n× n matrix A) is defined as

WA(x, y) =

n∑
i,j=1

AijIx∈Ii,y∈Ij

where I1, . . . , In is a partition of [0, 1] into adjacent intervals of width 1/n, and IB is
the indicator function that the event B happening, i.e., it is one if B holds, and 0
otherwise.

(a) Show that for any matrix with real valued entries, the cut-norm of WA is in fact
a maximum over a finite number of sets:

‖WA‖� := sup
U,V⊂[0,1]

∣∣∣∣∫
U×V

WA

∣∣∣∣ =
1

n2
max
S,T⊂[n]

∣∣∣∣∣∣∣
∑
i∈U
j∈V

Aij

∣∣∣∣∣∣∣ .
Hint: Consider a fixed set V , and the function fV (x) =

∫
V
dyWA(x, y) and let

U± be the sets where f < 0 and f > 0, respectively. Show that for all U ⊂ [0, 1],∣∣∣∣∫
U

fV (x)

∣∣∣∣ ≤ max

{∫
U+

fV ,

∣∣∣∣∣
∫
U−

fV

∣∣∣∣∣
}
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(b) Consider now the case where A is the adjacency matrix of G(n, p), and use the
above expression to express ‖WA − P‖� (where P is the constant function that
assigns p to (x, y) ∈ [0, 1]2) as

‖WA − P‖� =
1

n2
max
S,T⊂[n]

∣∣∣∣∣∣∣
∑
i∈S
j∈T

(Aij − p)

∣∣∣∣∣∣∣
Calculate the expectation of the sums for fixed S and T , and then use the Chernoff
bound from Exercise 1 (with N =

(
n
2

)
and pi = p) to show that the probability

that this sum is larger than εn2 in absolute value is bounded by 2e−Kn
2

for some
constant K = K(ε, p). Use a union bound to prove that G(n, p) converges to the
constant graphon P in probability.

(c) Bonus 1: if you know the needed probability theory, show that you get conver-
gence with probability one.

(d) Bonus 2: consider now the case that p = pn → 0. Show that if it does not go to
zero too fast, you get that ‖ 1

pn
WA − 1‖� → 0 in probability. If you do, you will

have shown that up to rescaling, all random graphs have the same limit, provided
pn is larger enough.

3 Inhomogneous random graphs converge to the gen-
erating graphon

Recall that a graphon is a symmetric function from [0, 1]2 into [0, 1], i.e., a function
W : [0, 1]2 → [0, 1] such that W (x, y) = W (y, x). We define the sequence Gn(W ) of
inhomogeneous random graphs generated by W as follows:

1. Choose x1, . . . , xn i.i.d. uniformly at random from [0, 1], and define a matrix

P (n) = P (n)(W ) ∈ [0, 1]n×n by setting P
(n)
ij = W (xi, xj).

2. The graph Gn(W ) on [n] is then defined by choosing, independently for all i < j,

an edge ij with probability P
(n)
ij .

In this exercise, we will prove the following theorem, which implies that δ�

(
Gn(W ),W

)
→

0 in probability.

Theorem 1 If W is a graphon, then

E
[
δ�

(
Gn(W ),W

)]
→ 0.

The theorem relies on two lemmas, which we will prove separately.

Lemma 1 There exists a constant D < ∞, such that if P ∈ [0, 1]n×n is a symmetric
matrix with empty diagonal, and A ∈ {0, 1}n×n is the random, symmetric matrix
with empty diagonal obtained from P by setting Aij = Aji = 1 with probability Pij,
independently for all i < j, then

Pr(‖WA −WP ‖� ≥ D/n) ≤ 2e−n.
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As a consequence
E[‖WA −WP ‖�] ≤ D/n+ 2e−n.

To state the second lemma, for an n× n matrices A and a graphon W , we define

δ̂1(A,W ) = min
σ
‖W −WAσ‖1,

where the min is taken over all permutations of [n], and Aσij = Aσ(i),σ(j). Since such
a permutation induces a measure preserving bijection on [0, 1] in the obvious way, and
since the cut-norm is bounded by the L1 norm, we clearly have that δ�(WA,W ) ≤
δ̂1(WA,W ).

Lemma 2 For all symmetric W : [0, 1]2 → [0, 1], define P (n) = P (n)(W ) to be the

n × n random matrix with entries P
(n)
ij = W (xi, xj), where x1, . . . , xn are chosen iid

uniformly at random in [0, 1]. Then

E
[
δ̂1

(
P (n),W

)]
→ 0.

(a) Use the Chernoff bound from Exercise 1 to prove Lemma 1. The proof is very
similar to that for G(n, p), and is only more complicated by the fact that instead
of
(
n
2

)
i.i.d. Be(p) random variables, you will have to deal with

(
n
2

)
independent

random variables distributed according to Be(Pij).

(b) Prove Lemma 2 for step functions. More precisely, let Qk be the partition of
[0, 1] into k intervals of length 1/k, and prove Lemma 2 for functions W which
are constant on sets of the form Y × Y ′, Y, Y ′ ∈ Qk.

� Hint: Reorder x1, . . . , xn in such a way that x1 < x2 < · · · < xn, and use
that for n � k, the fraction of variables xi that fall into the ith interval
of the partition Qk is concentrated around 1/k. Determine how large n
has to be (as a function of k), to get enough concentration to imply that

E
[
δ̂1(P (n)(W ),W )

]
→ 0.

(c) Reduce Lemma 2 to the case where W is a step function. To this end, use
the following approximation to the graphon W : the function WQk obtained by
averaging W over the blocks Y × Y ′, where Y and Y ′ are classes in Qk.

� Prove that for any two graphons U,W ,

1

n2
E[
∑
i6=j

|P (n)
ij (U)− P (n)

ij (W )| = n− 1

n
‖U −W‖1.

� Use the fact that ‖WQk −W‖1 → 0 to reduce the proof of Lemma 2 to the
case analyzed under (b). (For people familiar with measure theory: you can
use the Lebesgue differentiation theorem to prove almost sure convergence,
which implies L1 convergence. You are not asked to prove this fact - you
can just use it).

(d) Prove Theorem 1 from Lemmas 1 and 2.
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