CS294-179 Network Structure and Epidemics Fall 2020 Homework 3: Convergence of inhomogeneous random graphs

1 Concentration once more

We will need the following generalization of the Chernoff bound for i.i.d. Bernoulli random variables: Let X_1, \ldots, X_N independent r.v. with $X_i \sim Be(p_i)$ and let $n_i \in \{0, 1, 2\}$ be non-random.

(a) Prove that

$$\Pr\left(\sum_{i} n_i (X_i - p_i) \ge 2\delta \sum_{i} p_i\right) \le e^{-\frac{\delta^2}{2\delta + 2}\sum_{i} p_i}.$$

Hint: Bound $E[e^{tn_i(X_i-p_i)}]$ by $\exp((e^{n_it}-1)p_i-tn_ip_i) \le \exp((e^{2t}-1-2t)p_i)$.

(b) In a similar way, show that

$$\Pr\left(\sum_{i} n_i (X_i - p_i) \le -2\delta \sum_{i} p_i\right) \le e^{-\frac{\delta^2}{2}\sum_{i} p_i}.$$

2 G(n,p) converges to the constant function p

Recall that the empirical graphon of a graph with $n \times n$ adjacency matrix A (or more general, any $n \times n$ matrix A) is defined as

$$W_A(x,y) = \sum_{i,j=1}^n A_{ij} \mathbb{I}_{x \in I_i, y \in I_j}$$

where I_1, \ldots, I_n is a partition of [0, 1] into adjacent intervals of width 1/n, and \mathbb{I}_B is the indicator function that the event *B* happening, i.e., it is one if *B* holds, and 0 otherwise.

(a) Show that for any matrix with real valued entries, the cut-norm of W_A is in fact a maximum over a finite number of sets:

$$\|W_A\|_{\Box} := \sup_{U, V \subset [0,1]} \left| \int_{U \times V} W_A \right| = \frac{1}{n^2} \max_{S, T \subset [n]} \left| \sum_{\substack{i \in U \\ j \in V}} A_{ij} \right|.$$

Hint: Consider a fixed set V, and the function $f_V(x) = \int_V dy W_A(x, y)$ and let U_{\pm} be the sets where f < 0 and f > 0, respectively. Show that for all $U \subset [0, 1]$,

$$\left| \int_{U} f_{V}(x) \right| \leq \max\left\{ \int_{U_{+}} f_{V}, \left| \int_{U_{-}} f_{V} \right| \right\}$$

(b) Consider now the case where A is the adjacency matrix of G(n, p), and use the above expression to express $||W_A - P||_{\Box}$ (where P is the constant function that assigns p to $(x, y) \in [0, 1]^2$) as

$$||W_A - P||_{\Box} = \frac{1}{n^2} \max_{S, T \subset [n]} \left| \sum_{\substack{i \in S \\ j \in T}} (A_{ij} - p) \right|$$

Calculate the expectation of the sums for fixed S and T, and then use the Chernoff bound from Exercise 1 (with $N = \binom{n}{2}$ and $p_i = p$) to show that the probability that this sum is larger than ϵn^2 in absolute value is bounded by $2e^{-Kn^2}$ for some constant $K = K(\epsilon, p)$. Use a union bound to prove that G(n, p) converges to the constant graphon P in probability.

- (c) Bonus 1: if you know the needed probability theory, show that you get convergence with probability one.
- (d) Bonus 2: consider now the case that $p = p_n \to 0$. Show that if it does not go to zero too fast, you get that $\|\frac{1}{p_n}W_A 1\|_{\Box} \to 0$ in probability. If you do, you will have shown that up to rescaling, all random graphs have the same limit, provided p_n is larger enough.

3 Inhomogneous random graphs converge to the generating graphon

Recall that a graphon is a symmetric function from $[0,1]^2$ into [0,1], i.e., a function $W: [0,1]^2 \to [0,1]$ such that W(x,y) = W(y,x). We define the sequence $G_n(W)$ of inhomogeneous random graphs generated by W as follows:

- 1. Choose x_1, \ldots, x_n i.i.d. uniformly at random from [0, 1], and define a matrix $P^{(n)} = P^{(n)}(W) \in [0, 1]^{n \times n}$ by setting $P_{ij}^{(n)} = W(x_i, x_j)$.
- 2. The graph $G_n(W)$ on [n] is then defined by choosing, independently for all i < j, an edge ij with probability $P_{ij}^{(n)}$.

In this exercise, we will prove the following theorem, which implies that $\delta_{\Box}(G_n(W), W) \rightarrow 0$ in probability.

Theorem 1 If W is a graphon, then

$$\mathbb{E}\left[\delta_{\Box}\Big(G_n(W),W\Big)\right]\to 0.$$

The theorem relies on two lemmas, which we will prove separately.

Lemma 1 There exists a constant $D < \infty$, such that if $P \in [0,1]^{n \times n}$ is a symmetric matrix with empty diagonal, and $A \in \{0,1\}^{n \times n}$ is the random, symmetric matrix with empty diagonal obtained from P by setting $A_{ij} = A_{ji} = 1$ with probability P_{ij} , independently for all i < j, then

$$\Pr(\|W_A - W_P\|_{\square} \ge D/n) \le 2e^{-n}$$

As a consequence

$$E[||W_A - W_P||_{\Box}] \le D/n + 2e^{-n}$$

To state the second lemma, for an $n \times n$ matrices A and a graphon W, we define

$$\hat{\delta}_1(A, W) = \min \|W - W_{A^{\sigma}}\|_1,$$

where the min is taken over all permutations of [n], and $A_{ij}^{\sigma} = A_{\sigma(i),\sigma(j)}$. Since such a permutation induces a measure preserving bijection on [0, 1] in the obvious way, and since the cut-norm is bounded by the L_1 norm, we clearly have that $\delta_{\Box}(W_A, W) \leq \hat{\delta}_1(W_A, W)$.

Lemma 2 For all symmetric $W : [0,1]^2 \to [0,1]$, define $P^{(n)} = P^{(n)}(W)$ to be the $n \times n$ random matrix with entries $P_{ij}^{(n)} = W(x_i, x_j)$, where x_1, \ldots, x_n are chosen iid uniformly at random in [0,1]. Then

$$\mathbb{E}\left[\hat{\delta}_1\left(P^{(n)},W\right)\right] \to 0.$$

- (a) Use the Chernoff bound from Exercise 1 to prove Lemma 1. The proof is very similar to that for G(n, p), and is only more complicated by the fact that instead of $\binom{n}{2}$ i.i.d. Be(p) random variables, you will have to deal with $\binom{n}{2}$ independent random variables distributed according to $Be(P_{ij})$.
- (b) Prove Lemma 2 for step functions. More precisely, let Q_k be the partition of [0,1] into k intervals of length 1/k, and prove Lemma 2 for functions W which are constant on sets of the form $Y \times Y', Y, Y' \in Q_k$.
 - **Hint:** Reorder x_1, \ldots, x_n in such a way that $x_1 < x_2 < \cdots < x_n$, and use that for $n \gg k$, the fraction of variables x_i that fall into the i^{th} interval of the partition Q_k is concentrated around 1/k. Determine how large n has to be (as a function of k), to get enough concentration to imply that $E\left[\hat{\delta}_1(P^{(n)}(W), W)\right] \to 0.$
- (c) Reduce Lemma 2 to the case where W is a step function. To this end, use the following approximation to the graphon W: the function W_{Q_k} obtained by averaging W over the blocks $Y \times Y'$, where Y and Y' are classes in Q_k .
 - Prove that for any two graphons U, W,

$$\frac{1}{n^2} E[\sum_{i \neq j} |P_{ij}^{(n)}(U) - P_{ij}^{(n)}(W)| = \frac{n-1}{n} ||U - W||_1.$$

- Use the fact that $||W_{Q_k} W||_1 \to 0$ to reduce the proof of Lemma 2 to the case analyzed under (b). (For people familiar with measure theory: you can use the Lebesgue differentiation theorem to prove almost sure convergence, which implies L_1 convergence. You are not asked to prove this fact you can just use it).
- (d) Prove Theorem 1 from Lemmas 1 and 2.