CS294-179 Network Structure and Epidemics Fall 2020
 Homework 3: Convergence of inhomogeneous random graphs

1 Concentration once more

We will need the following generalization of the Chernoff bound for i.i.d. Bernoulli random variables: Let X_{1}, \ldots, X_{N} independent r.v. with $X_{i} \sim \operatorname{Be}\left(p_{i}\right)$ and let $n_{i} \in$ $\{0,1,2\}$ be non-random.
(a) Prove that

$$
\operatorname{Pr}\left(\sum_{i} n_{i}\left(X_{i}-p_{i}\right) \geq 2 \delta \sum_{i} p_{i}\right) \leq e^{-\frac{\delta^{2}}{2 \delta+2} \sum_{i} p_{i}}
$$

Hint: Bound $E\left[e^{t n_{i}\left(X_{i}-p_{i}\right)}\right]$ by $\exp \left(\left(e^{n_{i} t}-1\right) p_{i}-t n_{i} p_{i}\right) \leq \exp \left(\left(e^{2 t}-1-2 t\right) p_{i}\right)$.
(b) In a similar way, show that

$$
\operatorname{Pr}\left(\sum_{i} n_{i}\left(X_{i}-p_{i}\right) \leq-2 \delta \sum_{i} p_{i}\right) \leq e^{-\frac{\delta^{2}}{2} \sum_{i} p_{i}}
$$

$2 G(n, p)$ converges to the constant function p

Recall that the empirical graphon of a graph with $n \times n$ adjacency matrix A (or more general, any $n \times n$ matrix A) is defined as

$$
W_{A}(x, y)=\sum_{i, j=1}^{n} A_{i j} \mathbb{I}_{x \in I_{i}, y \in I_{j}}
$$

where I_{1}, \ldots, I_{n} is a partition of $[0,1]$ into adjacent intervals of width $1 / n$, and \mathbb{I}_{B} is the indicator function that the event B happening, i.e., it is one if B holds, and 0 otherwise.
(a) Show that for any matrix with real valued entries, the cut-norm of W_{A} is in fact a maximum over a finite number of sets:

$$
\left\|W_{A}\right\|_{\square}:=\sup _{U, V \subset[0,1]}\left|\int_{U \times V} W_{A}\right|=\frac{1}{n^{2}} \max _{S, T \subset[n]}\left|\sum_{\substack{i \in U \\ j \in V}} A_{i j}\right|
$$

Hint: Consider a fixed set V, and the function $f_{V}(x)=\int_{V} d y W_{A}(x, y)$ and let $U_{ \pm}$be the sets where $f<0$ and $f>0$, respectively. Show that for all $U \subset[0,1]$,

$$
\left|\int_{U} f_{V}(x)\right| \leq \max \left\{\int_{U_{+}} f_{V},\left|\int_{U_{-}} f_{V}\right|\right\}
$$

(b) Consider now the case where A is the adjacency matrix of $G(n, p)$, and use the above expression to express $\left\|W_{A}-P\right\|_{\square}$ (where P is the constant function that assigns p to $\left.(x, y) \in[0,1]^{2}\right)$ as

$$
\left\|W_{A}-P\right\|_{\square}=\frac{1}{n^{2}} \max _{S, T \subset[n]}\left|\sum_{\substack{i \in S \\ j \in T}}\left(A_{i j}-p\right)\right|
$$

Calculate the expectation of the sums for fixed S and T, and then use the Chernoff bound from Exercise 1 (with $N=\binom{n}{2}$ and $p_{i}=p$) to show that the probability that this sum is larger than ϵn^{2} in absolute value is bounded by $2 e^{-K n^{2}}$ for some constant $K=K(\epsilon, p)$. Use a union bound to prove that $G(n, p)$ converges to the constant graphon P in probability.
(c) Bonus 1: if you know the needed probability theory, show that you get convergence with probability one.
(d) Bonus 2: consider now the case that $p=p_{n} \rightarrow 0$. Show that if it does not go to zero too fast, you get that $\left\|\frac{1}{p_{n}} W_{A}-1\right\|_{\square} \rightarrow 0$ in probability. If you do, you will have shown that up to rescaling, all random graphs have the same limit, provided p_{n} is larger enough.

3 Inhomogneous random graphs converge to the generating graphon

Recall that a graphon is a symmetric function from $[0,1]^{2}$ into $[0,1]$, i.e., a function $W:[0,1]^{2} \rightarrow[0,1]$ such that $W(x, y)=W(y, x)$. We define the sequence $G_{n}(W)$ of inhomogeneous random graphs generated by W as follows:

1. Choose x_{1}, \ldots, x_{n} i.i.d. uniformly at random from $[0,1]$, and define a matrix $P^{(n)}=P^{(n)}(W) \in[0,1]^{n \times n}$ by setting $P_{i j}^{(n)}=W\left(x_{i}, x_{j}\right)$.
2. The graph $G_{n}(W)$ on $[n]$ is then defined by choosing, independently for all $i<j$, an edge $i j$ with probability $P_{i j}^{(n)}$.

In this exercise, we will prove the following theorem, which implies that $\delta_{\square}\left(G_{n}(W), W\right) \rightarrow$ 0 in probability.

Theorem 1 If W is a graphon, then

$$
\mathbb{E}\left[\delta_{\square}\left(G_{n}(W), W\right)\right] \rightarrow 0
$$

The theorem relies on two lemmas, which we will prove separately.
Lemma 1 There exists a constant $D<\infty$, such that if $P \in[0,1]^{n \times n}$ is a symmetric matrix with empty diagonal, and $A \in\{0,1\}^{n \times n}$ is the random, symmetric matrix with empty diagonal obtained from P by setting $A_{i j}=A_{j i}=1$ with probability $P_{i j}$, independently for all $i<j$, then

$$
\operatorname{Pr}\left(\left\|W_{A}-W_{P}\right\|_{\square} \geq D / n\right) \leq 2 e^{-n}
$$

As a consequence

$$
E\left[\left\|W_{A}-W_{P}\right\|_{\square}\right] \leq D / n+2 e^{-n}
$$

To state the second lemma, for an $n \times n$ matrices A and a graphon W, we define

$$
\hat{\delta}_{1}(A, W)=\min _{\sigma}\left\|W-W_{A^{\sigma}}\right\|_{1}
$$

where the min is taken over all permutations of $[n]$, and $A_{i j}^{\sigma}=A_{\sigma(i), \sigma(j)}$. Since such a permutation induces a measure preserving bijection on $[0,1]$ in the obvious way, and since the cut-norm is bounded by the L_{1} norm, we clearly have that $\delta_{\square}\left(W_{A}, W\right) \leq$ $\hat{\delta}_{1}\left(W_{A}, W\right)$.

Lemma 2 For all symmetric $W:[0,1]^{2} \rightarrow[0,1]$, define $P^{(n)}=P^{(n)}(W)$ to be the $n \times n$ random matrix with entries $P_{i j}^{(n)}=W\left(x_{i}, x_{j}\right)$, where x_{1}, \ldots, x_{n} are chosen iid uniformly at random in $[0,1]$. Then

$$
\mathbb{E}\left[\hat{\delta}_{1}\left(P^{(n)}, W\right)\right] \rightarrow 0
$$

(a) Use the Chernoff bound from Exercise 1 to prove Lemma 1. The proof is very similar to that for $G(n, p)$, and is only more complicated by the fact that instead of $\binom{n}{2}$ i.i.d. $B e(p)$ random variables, you will have to deal with $\binom{n}{2}$ independent random variables distributed according to $B e\left(P_{i j}\right)$.
(b) Prove Lemma 2 for step functions. More precisely, let Q_{k} be the partition of $[0,1]$ into k intervals of length $1 / k$, and prove Lemma 2 for functions W which are constant on sets of the form $Y \times Y^{\prime}, Y, Y^{\prime} \in Q_{k}$.

- Hint: Reorder x_{1}, \ldots, x_{n} in such a way that $x_{1}<x_{2}<\cdots<x_{n}$, and use that for $n \gg k$, the fraction of variables x_{i} that fall into the $i^{\text {th }}$ interval of the partition Q_{k} is concentrated around $1 / k$. Determine how large n has to be (as a function of k), to get enough concentration to imply that $E\left[\hat{\delta}_{1}\left(P^{(n)}(W), W\right)\right] \rightarrow 0$.
(c) Reduce Lemma 2 to the case where W is a step function. To this end, use the following approximation to the graphon W : the function $W_{Q_{k}}$ obtained by averaging W over the blocks $Y \times Y^{\prime}$, where Y and Y^{\prime} are classes in Q_{k}.
- Prove that for any two graphons U, W,

$$
\frac{1}{n^{2}} E\left[\sum_{i \neq j}\left|P_{i j}^{(n)}(U)-P_{i j}^{(n)}(W)\right|=\frac{n-1}{n}\|U-W\|_{1}\right.
$$

- Use the fact that $\left\|W_{Q_{k}}-W\right\|_{1} \rightarrow 0$ to reduce the proof of Lemma 2 to the case analyzed under (b). (For people familiar with measure theory: you can use the Lebesgue differentiation theorem to prove almost sure convergence, which implies L_{1} convergence. You are not asked to prove this fact - you can just use it).
(d) Prove Theorem 1 from Lemmas 1 and 2.

