CS294-179 Network Structure and Epidemics

Fall 2020

Homework 3: Convergence of inhomogeneous
random graphs

1 Concentration once more

We will need the following generalization of the Chernoff bound for i.i.d. Bernoulli
random variables: Let Xi,..., Xy independent r.v. with X; ~ Be(p;) and let n; €
{0, 1,2} be non-random.

(a) Prove that
2
Pr(Zni(Xi —pi) > 25Zp7;) < e~ T5FE i Pi
Hint: Bound E[et"(Xi=Pd)] by exp((e™*t — 1)p; — tnip;) < exp((e?* — 1 — 2t)p;).

(b) In a similar way, show that

Pr(Zm —p;) < 25Zp1)<e 22’“.

2 G(n,p) converges to the constant function p

Recall that the empirical graphon of a graph with n X n adjacency matrix A (or more
general, any n X n matrix A) is defined as

n
Wal(z,y) = Z Aijlecr, yer,

ij=1

where Iy, ..., I, is a partition of [0, 1] into adjacent intervals of width 1/n, and Ip is
the indicator function that the event B happening, i.e., it is one if B holds, and 0
otherwise.

(a) Show that for any matrix with real valued entries, the cut-norm of Wy is in fact
a maximum over a finite number of sets:

Wallg:= sup / WA ’ — max Al
IWal uv,vco lJuxv n? $,1c[n) ; !
JEV
Hint: Consider a fixed set V, and the function fy (x fv dyWu(z,y) and let

Uy be the sets where f < 0 and f > 0, respectively. Show that for all U C [0, 1],

/vam SmaX{/wfv, /va}




(b) Consider now the case where A is the adjacency matrix of G(n,p), and use the
above expression to express ||[W4 — P||g (where P is the constant function that
assigns p to (z,y) € [0,1]?) as

1
IWa = Pllo= — max Y (A —p)

2
n“ 8, TcCn] Py
JET

Calculate the expectation of the sums for fixed S and T', and then use the Chernoff

bound from Exercise 1 (with N = (72’) and p; = p) to show that the probability

that this sum is larger than en? in absolute value is bounded by 2e =% "* for some
constant K = K (e, p). Use a union bound to prove that G(n, p) converges to the
constant graphon P in probability.

(¢) Bonus 1: if you know the needed probability theory, show that you get conver-
gence with probability one.

(d) Bonus 2: consider now the case that p = p, — 0. Show that if it does not go to
zero too fast, you get that ||p%WA — 1||g — 0 in probability. If you do, you will
have shown that up to rescaling, all random graphs have the same limit, provided
pp, is larger enough.

3 Inhomogneous random graphs converge to the gen-
erating graphon

Recall that a graphon is a symmetric function from [0,1]? into [0,1], i.e., a function
W :[0,1]?> — [0,1] such that W(x,y) = W(y,z). We define the sequence G,,(W) of
inhomogeneous random graphs generated by W as follows:

1. Choose z1,...,z, iid. uniformly at random from [0,1], and define a matrix
P = P()(W) € [0,1]"*™ by setting Pi(jn) = W(x;, z;).
2. The graph G, (W) on [n] is then defined by choosing, independently for all i < j,
an edge ij with probability Pi(jn).
In this exercise, we will prove the following theorem, which implies that d (Gn (W), W) —
0 in probability.
Theorem 1 If W is a graphon, then

E [55 (Gn(W),W)} 0.
The theorem relies on two lemmas, which we will prove separately.

Lemma 1 There exists a constant D < oo, such that if P € [0,1]"*" is a symmetric
matriz with empty diagonal, and A € {0,1}"*™ is the random, symmetric matriz
with empty diagonal obtained from P by setting A;; = Ay = 1 with probability P;j,
independently for all i < j, then

Pr(||Wa — Wp|g > D/n) < 2e".



AS a consequence
E[|Wa — Wl < D/n+ 27"

To state the second lemma, for an n x n matrices A and a graphon W, we define

51(A, W) = min |W = Wl

where the min is taken over all permutations of [n], and A, = Ay 0(j)- Since such
a permutation induces a measure preserving bijection on [0, 1] in the obvious way, and
since the cut-norm is bounded by the L; norm, we clearly have that dg(Wa, W) <

Sy (Wa, W).

Lemma 2 For all symmetric W : [0,1]> — [0,1], define P™ = P"™ (W) to be the
n X n random matrix with entries Pl-(jn) = W(z;,x;), where x1,...,x, are chosen iid
uniformly at random in [0,1]. Then

E [51 (P("),W)} 0.

(a) Use the Chernoff bound from Exercise 1 to prove Lemma 1. The proof is very
similar to that for G(n,p), and is only more complicated by the fact that instead
of (%) i.i.d. Be(p) random variables, you will have to deal with (%) independent
random variables distributed according to Be(FP;;).

(b) Prove Lemma 2 for step functions. More precisely, let Q) be the partition of
[0,1] into k intervals of length 1/k, and prove Lemma 2 for functions W which
are constant on sets of the form Y x Y’, Y, Y’ € Q.

e Hint: Reorder z1,...,x, in such a way that 1 < zo < --- < x,, and use
that for n > k, the fraction of variables x; that fall into the *® interval
of the partition @ is concentrated around 1/k. Determine how large n
has to be (as a function of k), to get enough concentration to imply that

E[Sl(P(”)(W),W)} 0.

(¢) Reduce Lemma 2 to the case where W is a step function. To this end, use
the following approximation to the graphon W: the function Wg, obtained by
averaging W over the blocks Y x Y/, where Y and Y’ are classes in Q.

e Prove that for any two graphons U, W,
1 n n
SER 1P - P W) =
i#]

n—1

U =Wl
n

e Use the fact that ||[Wg, — W1 — 0 to reduce the proof of Lemma 2 to the
case analyzed under (b). (For people familiar with measure theory: you can
use the Lebesgue differentiation theorem to prove almost sure convergence,
which implies L; convergence. You are not asked to prove this fact - you
can just use it).

(d) Prove Theorem 1 from Lemmas 1 and 2.
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