CS294-179, Spring 2025

Homework #2
Due 2/14

1 Exponential growth of an epidemic for R; > 1: a branching
process approximation [8 Points|

On many random graphs, the early phase of an SIR epidemic is well approximated by a branching process
Tx, with X ~ D describing the random number of people infected by a single individual, and ¢ = E[X]
taking the role of the basic reproduction number Ry. It is basic folk knowledge, that in the early stages of
an epidemic, Ry > 1 implies exponential growth of the epidemic. In the branching process language, this
means that Z,,, the number of off-spring in generation n, grows exponential in n.

As we have seen in the course, for ¢ > 1, the branching process T'x has a positive survival probability
0 = Pr(|Tx| = o0) > 0, and in expectation, E[Z,] = ¢". However, this does not imply that Tx grows that
fast with high probability. In fact, given that E[Z,] = ¢", it could quite well be that Z,, stays bounded with
very high probability, and grows like, e.g., (2¢)™ with probability 27". In this exercise, you will show that
this does not happen, and that conditioned on survival, Z,, grows exponentially in n, with rate close to logc

in the sense that
log Z,

— logc in probability.

More explicitly, you will show that for all € > 0,

Pr ((0(1_6)" < Zp < (3O |Tx| = oo) — 1, as n — oo. (1)
To prove this, you will use a concentration inequality for i.i.d. random variables X7, X5, ... with distri-
bution Dx, namely
¢
Pr <Z X; < xé) <e U@ if gz < B[X] (2)
i=1

where I(z) > 0 is the rate function for X. You derived this bound in Problem 3 of HW1 (with a formula
for I(x) given in terms of a supremum). The strict positivity of I(x) for arbitrary distributions Dx and any
2 < E[X] has been established in Lecture 2.

(a) [1 Point]: Use Markov’s inequality to prove an upper bound on the unconditional probability Pr(Z, >
c(1+9m) " Combine this bound with the fact that § = Pr(|Tx| = oo) > 0 to get an upper bound on the

conditional probability Pr(Z, > ¢t

|T'x| = 00) and conclude that

Pr (Zn > citon

|TX|:oo>—>0, as n — oo.

(b) [2 Points|: Recall the definition of the number of active vertices Y; from Lecture 2. In particular, recall
that ¥; > 0 for all ¢ if |T,| = oo (survival), and that Y; =1+ X7 +---+ X; —¢tif ¥; > 0. Fix § > 0 and

an integer ko (which we will eventually chose to be dk) and use the bound to show that
e—I(c—é)kU

Conclude that conditioned on survival with high probability, i.e., “with probability tending to 1 as kg
goes to infinity”,
Y:;> (c—1—-20)t forall t> k. (3)

(c) [2 Points| Recall the inductive definition of ¢ from Lecture 5,
ty =1 and tg41 =1+ thk

illustrate this relationship for ¥ = 1 and 2, reproduce the argument that Y;, = Zj, and show that
conditioned on survival, tp > k.



(d) [2 Points|: Use what you have proven so far to conclude that conditioned on survival, with high proba-
bility (again, as kg — 00),

ty > (c— )Rty > (c=0)f ks and Zp =Y;, > (c—1—=08)(c—06)*Fky forall k > k.

(e) [1 Point]: Complete the proof of the lower bound on the growth of Zj, by setting ko = |9k | and showing
that § > 0 can be chosen small enough to guarantee that for k large enough, the lower bound proven so
far is at least c(1=9*

2 Cycles in G(n,p) [4 Points]

(a) Let T be the number of triangles in G(n,p). Calculate E(T) as a function of n and p.

(b) Show that there are (kgl)! ways to have a cycle on k vertices. Then calculate the expected number of
cycles of length k in G(n,p). For k = 3 this should agree with part @

(¢) Use Markov’s inequality to show that the probability that G(n,p) containing any cycle goes to zero if

pn — 0. Hint: Write the expected number of cycles as a sum over the expected number of cycles of length

(pn)®

k and show that for pn < 1 this expected number is bounded by T—pn

3 Threshold for the existence of isolated vertices [6 Points|

In class, we proved that for any random variable X with values in {0,1,2,...}, we have

Pr(X > 0) < E[X] (4)
Pr(X >0) > %g?] . (5)

In this problem, we use these bounds to establish the threshold for the existence of isolated vertices in
G(n,p). For this exercise, we will take X to be the number of isolated vertices in G(n, p)

(a) Write X as ) ., I;, where I; is the indicator function that i is isolated, and show that E[X] = n(l—p)n~!
(Hint: a vertex i is isolated if none of the edges incident with ¢ is occupied). Use the first moment bound
in that with probability tending to 1, G(n,p) has no isolated vertices if p > clo% and ¢ > 1.

(b) For the other direction, you will need to calculate the expectation of X2. Write this expectation as
a double sum over i,j € [n]. Treating the case ¢ = j and the case i # j, separately, show that
E[X?] = E[X] + n(n — 1)(1 — p)?"~3. Why is the exponent 2n — 3, and not just 2(n — 1)?

(¢) Use the second moment bound in Eq. to show that with probability tending to 1, G(n, p) has at least

one isolated vertex when p < clo% and ¢ < 1.
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