
CS294-179, Spring 2025
Homework #2

Due 2/14

1 Exponential growth of an epidemic for R0 > 1: a branching
process approximation [8 Points]

On many random graphs, the early phase of an SIR epidemic is well approximated by a branching process
TX , with X ∼ D describing the random number of people infected by a single individual, and c = E[X]
taking the role of the basic reproduction number R0. It is basic folk knowledge, that in the early stages of
an epidemic, R0 > 1 implies exponential growth of the epidemic. In the branching process language, this
means that Zn, the number of off-spring in generation n, grows exponential in n.

As we have seen in the course, for c > 1, the branching process TX has a positive survival probability
θ = Pr(|TX | = ∞) > 0, and in expectation, E[Zn] = cn. However, this does not imply that TX grows that
fast with high probability. In fact, given that E[Zn] = cn, it could quite well be that Zn stays bounded with
very high probability, and grows like, e.g., (2c)n with probability 2−n. In this exercise, you will show that
this does not happen, and that conditioned on survival, Zn grows exponentially in n, with rate close to log c
in the sense that

logZn

n
→ log c in probability.

More explicitly, you will show that for all ϵ > 0,

Pr
(
(c(1−ϵ)n ≤ Zn ≤ (c(1+ϵ)n

∣∣∣ |TX | = ∞
)
→ 1, as n → ∞. (1)

To prove this, you will use a concentration inequality for i.i.d. random variables X1, X2, . . . with distri-
bution DX , namely

Pr

(
ℓ∑

i=1

Xi ≤ xℓ

)
≤ e−ℓI(x) if x < E[X] (2)

where I(x) > 0 is the rate function for X. You derived this bound in Problem 3 of HW1 (with a formula
for I(x) given in terms of a supremum). The strict positivity of I(x) for arbitrary distributions DX and any
x < E[X] has been established in Lecture 2.

(a) [1 Point]: Use Markov’s inequality to prove an upper bound on the unconditional probability Pr(Zn ≥
c(1+ϵ)n). Combine this bound with the fact that θ = Pr(|TX | = ∞) > 0 to get an upper bound on the

conditional probability Pr(Zn ≥ c(1+ϵ)n
∣∣∣ |TX | = ∞) and conclude that

Pr
(
Zn ≥ c(1+ϵ)n

∣∣∣ |TX | = ∞
)
→ 0, as n → ∞.

(b) [2 Points]: Recall the definition of the number of active vertices Yt from Lecture 2. In particular, recall
that Yt > 0 for all t if |Tx| = ∞ (survival), and that Yt = 1+X1 + · · ·+Xt − t if Yt > 0. Fix δ > 0 and
an integer k0 (which we will eventually chose to be δk) and use the bound (2) to show that

Pr
(
∃t ≥ k0 s.th. Yt ≤ (c− 1− δ)t and |Tx| = ∞

)
≤ e−I(c−δ)k0

1− e−I(c−δ)
.

Conclude that conditioned on survival with high probability, i.e., “with probability tending to 1 as k0
goes to infinity”,

Yt > (c− 1− δ)t for all t ≥ k0. (3)

(c) [2 Points] Recall the inductive definition of tk from Lecture 5,

t1 = 1 and tk+1 = tk + Ytk

illustrate this relationship for k = 1 and 2, reproduce the argument that Ytk = Zk, and show that
conditioned on survival, tk ≥ k.
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(d) [2 Points]: Use what you have proven so far to conclude that conditioned on survival, with high proba-
bility (again, as k0 → ∞),

tk ≥ (c− δ)k−k0tk0
≥ (c− δ)k−k0k0 and Zk = Ytk ≥ (c− 1− δ)(c− δ)k−k0k0 for all k ≥ k0.

(e) [1 Point]: Complete the proof of the lower bound on the growth of Zk, by setting k0 = ⌊δk⌋ and showing
that δ > 0 can be chosen small enough to guarantee that for k large enough, the lower bound proven so
far is at least c(1−ϵ)k

2 Cycles in G(n, p) [4 Points]

(a) Let T be the number of triangles in G(n, p). Calculate E(T ) as a function of n and p.

(b) Show that there are (k−1)!
2 ways to have a cycle on k vertices. Then calculate the expected number of

cycles of length k in G(n, p). For k = 3 this should agree with part (a).

(c) Use Markov’s inequality to show that the probability that G(n, p) containing any cycle goes to zero if
pn → 0. Hint: Write the expected number of cycles as a sum over the expected number of cycles of length

k and show that for pn < 1 this expected number is bounded by (pn)3

1−pn .

3 Threshold for the existence of isolated vertices [6 Points]

In class, we proved that for any random variable X with values in {0, 1, 2, . . . }, we have

Pr(X > 0) ≤ E[X] (4)

Pr(X > 0) ≥ (E[X])2

E[X2]
. (5)

In this problem, we use these bounds to establish the threshold for the existence of isolated vertices in
G(n, p). For this exercise, we will take X to be the number of isolated vertices in G(n, p)

(a) WriteX as
∑

∈[n] Ii, where Ii is the indicator function that i is isolated, and show that E[X] = n(1−p)n−1

(Hint: a vertex i is isolated if none of the edges incident with i is occupied). Use the first moment bound
in (4) that with probability tending to 1, G(n, p) has no isolated vertices if p ≥ c logn

n and c > 1.

(b) For the other direction, you will need to calculate the expectation of X2. Write this expectation as
a double sum over i, j ∈ [n]. Treating the case i = j and the case i ̸= j, separately, show that
E[X2] = E[X] + n(n− 1)(1− p)2n−3. Why is the exponent 2n− 3, and not just 2(n− 1)?

(c) Use the second moment bound in Eq. (5) to show that with probability tending to 1, G(n, p) has at least
one isolated vertex when p ≤ c logn

n and c < 1.
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