
CS294-179 Network Structure and Epidemics
Fall 2020

Homework #1 (added bonus problem on 9/4)
Due Fr. 9/11

This and the next assignment will review some of the statistics/probability
tools needed to follow the lectures. Most of the material needed to do these
assignments can be found in Section 2.1 - 2.5 (pp. 55 - 76) of the course of
Remco van der Hofstad on Complex Networks and Random Graphs., https:
//www.win.tue.nl/~rhofstad/NotesRGCN.pdf. If you are not familiar with
that material, you might want to consider reading these 20 pages as part of this
assignment. You can use the material from this course to solve the problems
below, but please make sure you understand the proofs you might find there,
and reformulate them in your own words.

1. Birth process [6 Points]

1. Calculate the generating function G(x) for a Poisson random variable
Poi(c); write out the implicit equation for the extinction probability η of
a birth process with offspring distribution Poi(c) to show that the survival
probability, θ = 1− η obeys the equation θ + e−cθ = 1. [2 Points]

2. Calculate the generating function for Bin(n, p), and express it in the form
f(x, p)n. Show that if n → ∞ and np → c ∈ (0,∞), it converges to
that of a Poisson random variable with mean c. Use this to conclude that
the extinction probability of a branching process with offspring distribu-
tion Bin(n, p) converges to that of a Poisson branching process, i.e., a
branching process with Poisson offspring distribution. [2 Points]

3. Recall that conditioned on extinction, a supercritical birth process with
offspring distribution pk and extinction probability η becomes subcritical,
with offspring distribution p̃k = ηk−1pk. Show that if X ∼ Poi(c) with
c > 1, this distribution is again Poisson, with parameter c̃ = cη, and show
that ce−c = c̃e−c̃. [2 Points]
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2. Concentration Bounds [6 Points]

Let X be a random variable with E[X] = c and let X1, X2, . . . be i.i.d. with
the same distribution as X. In this exercise we will show that

Pr(

n∑
i=1

Xi ≥ nx) ≤ e−nI(x) if x > c; (1)

Pr(

n∑
i=1

Xi ≤ nx) ≤ e−nI(x) if x < c, (2)

where I(x) is the “rate function”

I(x) = sup
t∈R

(tx− logE[etX ]).

We will use this bound to derive the standard Chernoff bound for binomial
random variables.

1. Use the standard trick that for any random variable Z and any t ≥ 0,
Pr(Z ≥ z) = Pr(etZ ≥ etz) to show that for x ≥ c and t ≥ 0

Pr(

n∑
i=1

Xi ≥ nx) ≤ e−nφt(x)

where φt(x) = tx− logE[etX ]. Deduce the bound (1).

Hint: to extend the range of t from t ≥ 0 to t ∈ R, use Jensen’s inequality
Hölder to show that φt(x) ≤ t(x− c) ≤ 0 = φ0(x) if x ≥ c and t ≤ 0). [2
Points]

2. Consider the variables Yi = −Xi to prove (2). [1 Point]

3. Let Be(p) be the Bernoulli distribution. Show that for X ∼ Be(p) and x ∈
(0, 1), I(x) is the relative entropy (also called Kullback–Leibler divergence)

Ip(x) = x log

(
x

p

)
+ (1− x) log

(
1− x
1− p

)
.

Taylor expand Ip(x) to second order around x = p and bound the second
derivative from below by min{1/x, 1/p} to show that

Ip(x) ≥ (x− p)2

2
min{ 1

x
,

1

p
}.

Use this to derive the following version of the Chernoff bound for the
binomial distribution

Pr
(
Bin(n, p) ≥ (1 + ε)np

)
≤ e−np

ε2

2(1+ε)

Pr
(
Bin(n, p) ≤ (1− ε)np

)
≤ e−np ε

2

2 .

Hint: As an intermediate step, prove that the distribution of Bin(n, p) is
the same as the sum of n i.i.d. Bernoulli random variables. [3 Points]
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3. Couplings and Stochastic Domination [5 Points]

Given n random variables X1, . . . , Xn not necessarily defined over the same
probability space, a coupling of X1, . . . , Xn is a joint distribution P for these
variables such that for each i, the marginal probability distribution of Xi is the
correct one. I.e., if Ai is an event defined for the random variable Xi, then
Pr(Xi ∈ Ai) = P(Xi ∈ Ai) for all i. The simplest example is an independent,
or product, coupling:

P(X1 ∈ A1, . . . , Xn ∈ An) =
∏
i

Pr(Xi ∈ Ai).

An another example is the identity coupling: if X and Y have the same dis-
tribution, we can couple them by setting P(X = Y,X ∈ A) = Pr(X ∈ A) and
P(X 6= Y ) = 0. Couplings will be explicitly or implicitly used throughout this
course.

The first use we will examine are stochastic orderings. Given two random
variables X,Y with values in R, we say that X stochastically dominates Y if X
and Y can be coupled in such a way that P(X ≥ Y ) = 1.

An example are two Poisson random variables X ∼ Poi(c) and Y ∼ Poi(d)
with c > d. To couple them in such a way that X ≥ Y with probability 1, we
define a third random variable Z ∼ Poi(c − d), and couple Y and Z so that
they are independent. As an easy calculation shows (part of this exercise, see
below), the distribution of Y +Z is then that of X, i.e., Y +Z ∼ Poi(c). Setting
X = Y + Z, this gives a coupling of X and Y , and

P(X ≥ Y ) = P(Z ≥ 0) = 1.

1. Complete the above proof by showing that if Y and Z are independent
Poisson random variables with mean d and c − d, then Y + Z ∼ Poi(c),
i.e., show that

∑
i,j≥0:i+j=k

Pr(Y = i)Pr(Z = j) =
ck

k!
e−c.

[1 Point]

2. Let X ∼ Bin(n, p) and Y ∼ Bin(m, p) with n ≥ m. Use a similar strategy
as the one above to show that X stochastically dominates Y . Hint: Use
the fact that the distribution of Bin(n, p) is the same as the sum of n i.i.d.
Bernoulli random variables, to produce such a coupling. [2 Points]

3. Prove that if X stochastically dominates Y , then for all x ∈ R, Pr(X ≥
x) ≤ Pr(Y ≥ x). Or is this a typo, and the correct statement should be
Pr(X ≥ x) ≥ Pr(Y ≥ x)? Whichever you decide it is, please prove that
one. [2 Points]
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4∗. Unified Bernoulli, Binomial and Poisson Concentration Bound

Here we will show that if X is a Bernoulli, Binomial or Poisson random
variable with expectation c, and X1, . . . , Xk are i.i.d. with the same distribution
as X, then then

Pr(

k∑
i=1

Xi ≤ kx) ≤ e−k
(x−c)2

2c if x ≤ c

Pr(

k∑
i=1

Xi ≥ kx) ≤ e−k
(x−c)2

2x if x ≥ c.

1. For the Bernoulli distribution this follows from Exercise 2.3 of this set.

2. Prove that if X̃ =
∑n
i=1Xi, where the Xi are i.i.d with rate function I(·),

then X̃ has rate function nI(x/n). This reduces the above bound to that
for the Bernoulli distribution, since a Bin(n, p) random variable is the
sum of n i.i.d. Be(p) random variables. [2 Bonus Points]

3. Calculate the rate function for Poi(c) and show that the second derivative
at a point y is equal to 1/y. Bound this from below by the minimum of
1/c and 1/x to obtain the above concentration bound for Poi(c). [2 Bonus
Points]
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