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ABSTRACT 

Future maskless lithography systems require data throughputs of the order of tens of terabits per second in order to have 
comparable performance to today’s mask-based lithography systems.  This work presents an approach to overcome the 
throughput problem by compressing the layout data and decompressing it on the chip that interfaces to the writers.  To 
achieve the required throughput, many decompression paths have to operate in parallel.  The concept is demonstrated by 
designing an interface chip for layout decompression, consisting of a Huffman decoder and a Lempel-Ziv systolic 
decompressor.  The 5.5mm x 2.5mm prototype chip, implemented in a 0.18µm, 1.8V CMOS process is fully functional at 
100MHz dissipating 30mW per decompression row.  By scaling the chip size up and implementing it in a 65nm technology, 
the decompressed data throughput required for writing 60 wafers per hour in 45nm technology is feasible. 
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1. INTRODUCTION 

As minimum feature sizes in CMOS technology scale, the cost of critical dimension masks dramatically increases. Mask 
costs in 90nm technology are exceeding 1 million dollars.  An alternative to mask-based optical lithography is maskless 
lithography, where the layout data is directly written onto a wafer.  Various approaches have been investigated, including 
e-beam, micro-machined mirror projection, and nano-jet printing [1]. To achieve the required 1nm edge placement with 
25nm pixels in 45nm technology, a 5-bit per pixel data representation is needed, resulting in a total of over 500Tb of 
information on a 300mm wafer. To be competitive with conventional optical systems, any future lithography system 
should be capable of projecting one layer per minute, resulting in approximately 12Tb/s of raw data throughput.  Adding 
the necessary redundancy and communications overhead to the data stream would likely increase the required throughput 
by another 25%, reaching 15Tb/s ranges. 

This paper presents a maskless lithography interface and circuitry that provide the required throughput.  It is designed to 
work with a micro-machined mirror array integrated on a chip exposed by extreme ultra-violet (EUV) light in a 
conceptual system as shown in Figure 1. In this approach, the conventional mask is replaced by a programmable one, 
which is reprogrammed between consecutive light flashes.  Either storing or continuously feeding the required amount of 
data to the writer chip is not feasible.  The key idea of the work presented here is the compression of rasterized data on a 
main storage unit and the continuous decompression on-the-fly, as the data is being downloaded on the writer [2].  With 
compression ratios of about 20, the chip input bandwidth would be 800Gb/s [3]. This is feasible in 90nm or 65nm 
technologies, which could be used for processing data with 45nm feature sizes. 

The basic design of a data processing system capable of delivering tera-pixel data rates necessary to achieve next-
generation maskless lithography is shown in Figure 2.  This design consists of storage disks, a processor board with 
memory, and a decoder-writer chip with data-decoding circuitry fabricated together with a massive array of pixel writers.  
Layout data for all layers of a single chip is compressed off-line and stored on the disks. Before the writing process 
begins, only a single compressed layer is transferred from disks to the processor board memory and stored there. As the 
writers write a stripe across the wafer, compressed data is streamed from the processor board to the decoder-writer chip 
in real-time as needed.  The on-chip decoding circuitry, in real-time, expands the compressed data stream into the data 
signals necessary to control the writers.  The key challenge for such a system is the design of a high-throughput on-chip 
data decompression architecture and the circuitry that implements it. This paper demonstrates the design of such a high-
throughput decompression chip.  To simplify the solution, a binary interface to the writers using an SRAM array is 
implemented.  This avoids the handling of 5-bit grayscale values that would require analog control of mirror positions 
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using analog memory.  However this is not a good choice for a practical solution as it results in 6 times higher required 
data throughput (5-bit grayscale codes are replaced with 32-bit thermometer codes). 
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Figure 1. Maskless writing using micromirrors. 
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Figure 2. Architecture of a data-delivery system for maskless lithography. 
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Figure 3. Multiple LZ77 decoders operating in parallel. 

Proc. of SPIE Vol. 5374     1093



2. DESIGN OF A HIGH-THROUGHPUT DECODER 

When the data compression and decompression algorithms are being designed, they are optimized for operation on a 
general-purpose microprocessor, and rarely a hard-wired hardware implementation is targeted.  The primary difficulty of 
using compression to solve the data transmission problem associated with maskless lithography is that in order to be 
effective, the compressed representation must be decoded in a timely manner to sustain the required throughput, with 
reasonable computational and memory resources. To achieve this, a compression algorithm has to be designed, and then 
mapped into an architecture and an implementation that expands the compressed data at a rate of 800 Gb/s to 15 Tb/s of 
output data. We consider the design of a high-speed hardware decoder based on ZIP, the simplest compression algorithm 
presented in prior research [4] which achieves good compression on lithography data. The basic algorithm behind ZIP 
compression is Lempel-Ziv 1977 (LZ77) [5], and the design parameters of a LZ77 decoder are optimized to minimize 
circuit usage while maintaining compression efficiency. 

2.1. Fast LZ77 Decoding Architecture 

The design of a fast LZ77 decoder, shown in Figure 3, consists of two decoding blocks, a Huffman decoder, and an LZ 
match decoder. Because each decoder block has the potential to expand the data, and because the expansion factor varies 
in time with the compression ratio of the data, buffers are necessary to smooth both input and output data rates. In 
general, this would require three buffers, one in front of the Huffman decoder, one after the match decoder, and one 
between the two decoders. To reduce the buffering requirements, we choose an implementation of the Huffman decoding 
algorithm which observes a constant input rate, and we choose an implementation of the LZ77 decoding algorithm which 
observes a constant output rate. Consequently the variability in data rate is completely absorbed by a single buffer, 
capable of both variable input and output data rates. 

For simplicity, a Huffman decoder with an input data rate of 1 bit per cycle is chosen. Also, a match decoder with a 
constant output rate of one pixel per cycle is chosen which corresponds to an output rate of 5 bits per cycle for 32 gray 
level data. To keep the operating frequencies within reasonable limits, a Huffman algorithm that decodes m-bits per 
cycle and match decoders that output n-pixels per cycle, are used, with a corresponding increase in hardware complexity. 
The simpler alternative which we adopt is to use k independent LZ77 decoders to multiply both input and output data 
rate by a factor of k.  To accomplish this, the layout data must be divided into blocks and compressed independently, 
Figure 3, though this may come at some cost to compression efficiency as discussed in [4]. The number of 
decompression paths needed depends on the maximum operating frequency of the Huffman decoder and LZ match 
decoder of the final design. 

2.2. Huffman Decoding 

The essence of Huffman encoding is that it assigns shorter codewords to more frequent data, thus reducing the average 
number of bits required for representation. With layout data tested in [4] it achieves a typical compression ratio of 
approximately 5. This implementation uses the canonical Huffman table because of its simple representation that lends 
itself to a less complex decoder implementation. The algorithm description can be found in [6]. The Huffman decoder 
architecture is shown in Figure 4. The coded data is input sequentially into a shift register. For every bit that is shifted in, 
the counter is incremented. The output of the counter is used to address mincode, maxcode and index tables. The word in 
the shift register is compared to the output of the maxcode table. If the shift register word is less than the output of the 
maxcode table then the decoding is done. To get the decoded word, the shift register word is added to the output of the 
index table, and then subtracted from the output of the mincode table. This value is then used to address a symbol table 
which holds the decompressed symbols. To increase the decoding speed, the architecture is pipelined at the cut-sets 
shown in Figure 4, leaving only the symbol memory lookup time in the critical path. 

When implemented in 0.18µm CMOS technology, the area of this Huffman decoder is about 6mm x 120µm.  This large 
aspect ratio is chosen to allow operation of multiple parallel paths on the same chip. Scaling this design to 65nm 
technology would make its interfacing to the other parts of the decoder and the writer array feasible. 
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Figure 4. Block diagram of the Huffman decoder. 

 

2.3. Lempel-Ziv Matching Algorithm 

The Lempel-Ziv algorithm replaces repeating sequences of symbols with a pointer to a history buffer. This pointer 
indicates where in the buffer to retrieve the data (offset), and how many symbols to copy (length). Uncompressed 
symbols are literals. The architecture chosen for this design consists of a systolic array processor, where the data pass bi-
directionally from one processing element to neighboring elements in a regular pattern [7]. Each processing element 
consists of one forward buffer and one reverse buffer and stores two 8-bit symbols. Data flows from left to right through 
the forward registers and then wraps back, flowing from right to left through the dictionary registers. Figure 5 illustrates 
the functionality of the systolic array processing elements. The decoding is done locally, avoiding any long wires to the 
history lookup buffer that would be unavoidable in the non-systolic implementation. To get better compression, the 
literal, offset, and length symbols are independently Huffman coded. To allow this, separate Huffman tables must be 
multiplexed in, depending on the current symbol being decoded. Furthermore, in the systolic implementation, a 
runlength decoder is used. This decoder simply sets a flag indicating when an <offset, length> pair is to be decoded by 
the processing elements. It transmits the offset symbol to the systolic array <length> times. If the input symbol is a literal 
then this is copied to the systolic array. Two critical parameters in implementing the LZ algorithm are the match length 
and the size of the buffer. Figure 6 shows the tradeoff between the compression ratio and the buffer size and match 
length.  A buffer size of 1024 and a match length of 256 achieve the near optimum compression ratios for layout data [4]. 

The systolic implementation of the LZ algorithm provides redundancy for the writing process.  Since the complete pixel 
exposure is achieved by multiple EUV light flashes simultaneously with cycling the data through the systolic array, the 
writing process can be designed to compensate for non-functional mirrors. 

The layout of this LZ decoder with buffer length of 256 and match length of 256 is about 7.8mm x 64µm.  This layout 
aspect ratio is chosen to allow integration of 1000 parallel decoding paths in a full-throughput chip in 65nm technology.  
It should be noted that LZ achieves better compression per unit area in the hardware implementation than the Huffman 
decoder.  However the LZ algorithm alone does not achieve the desired compression ratio, so in this experiment we 
implemented both the LZ and the Huffman coding [4]. 

Proc. of SPIE Vol. 5374     1095



fdata

copy

rdata

fdata

copy

rdata

PE
0

PE
k

PE
N

 

a) 

A=B
A

B

copy

fdata_out

rdata_in

rdata_outMEM_ID

copy_in

fdata_in<0>

1

8

8

1

8

8

1

0

1

0

 

b) 

Figure 5. a) Systolic structure, consisting of processing elements, b) Processing element of LZ decompressor. 

3. CHIP ARCHITECTURE 

To meet the throughput requirements for this application, many decompression paths must operate in parallel on the 
pattern generator chip. The block diagram of each decompression path is shown in Figure 7. The main blocks are a 
Huffman decoder and a Lempel-Ziv decoder. An asynchronous FIFO is required in between these blocks because the 
blocks operate at different, time-varying rates. A CRC block is implemented at the end of each frame to check for any 
data errors. The data is framed into blocks consisting of the 1024 bytes of data, a 1-byte CRC check and an 8-byte 
synchronization block to synchronize the writer-interface circuitry to the writers. In the case of a micro-mirror based 
system, the writer-interface consists of a simple SRAM memory array. 

3.1. Design Process 

The design is captured as a high level Simulink model. Datapath blocks are created using the basic building blocks in 
Simulink such as registers, adders, and multipliers. Memory blocks are created using Matlab M-functions. The design is 
functionally verified in Simulink and then directly mapped into the standard cell library using the SSHAFT automated 
design flow [8]. The datapath blocks in Simulink are mapped into Synopsys Module Compiler blocks. Module Compiler 
then builds the netlists for the datapath blocks using the standard cell library and generates a VHDL description that can 
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be simulated with the same test vectors used in Simulink to verify functionality of each of the datapath blocks. Memory 
blocks are created using memory generators. From the top-level dataflow graph in Simulink the decompression rows are 
mapped into standard cells and automatically placed and routed. 
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Figure 6. Compression performance vs. a) history buffer or b) match length for 16 KB uncompressed data. 
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Figure 7. Decompressor row block diagram. 
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Figure 8. Die photo of the prototype chip. 

4. EXPERIMENTAL RESULTS 

To demonstrate the feasibility of this approach to data delivery for maskless lithography, a prototype chip in 5-metal 
1.8V 0.18µm was designed. The chip consists of 8 parallel decompression paths, each with a Huffman block, an LZ 
block consisting of a 256-byte history lookup and a 256 word FIFO. All the FIFOs and buffers are imported as SRAM 
blocks. The total chip size is 2.5x5.5mm2. The history buffer is limited to 256 bytes due to prototype chip area 
constraints. The chip is fully functional at 100 MHz dissipating 30mW per decompression row. The chip has been 
designed to operate at 500MHz, although the test setup limits the verification up to 100MHz.  Each decompression path 
loads 8 bits of data per clock cycle; since the chip contains 8 identical paths, a maximum output throughput of 32Gb/s 
can be achieved. The die photo is shown in Figure 8. To achieve the required throughput, a complete chip implemented 
in 65nm technology for printing 45nm features would require two rows of 1024 parallel decompression paths, each 
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operating at 1GHz. The LZ symbols would be 16 bits, with appropriately increased buffer size. The decompressed data 
will be de-multiplexed and fed to two 16,384 x 8,184 SRAM arrays that will interface to the mirrors.  

Table 1 compares the performance of the test-chip versus that of the full-scale chip.  By scaling up the die size to occupy 
a full reticle and scaling down the feature sizes to use a 65nm technology, the required throughput is achievable. 

5. CONCLUSIONS 

A real-time layout decompression architecture and its implementation on a silicon chip were presented. The architecture 
consists of parallel decompression paths, where each path is composed of a Huffman decoder and a Lempel-Ziv systolic 
decompressor.  A fully functional smaller scale prototype chip demonstrates the feasibility of this approach.  A scaled up 
decompression chip would be able to deliver 32Tb/s of data to the array of 256 million mirrors.  Besides the micro-
mirror based approach, this architecture can be easily extended to other types of maskless lithography systems such as e-
beam direct write, or to any other high data rate application where data compression is possible. 
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Table 1: Performance comparison: The test chip, the test chip scaled down to 65nm technology, 65nm design expanded to full reticle. 

 
Prototype in 

0.18µm CMOS 
Prototype scaled to 

65nm 
Full-scale writer 

Technology 180nm 65nm 65nm 
Input bandwidth 800Mb/s N/A 400Gb/s 

Decompression paths 8 8 2 x 1024 
Path pitch 240µm 80µ 40µm 

History buffer 256 256 1024 
Max throughput 32Gb/s 96Gb/s 32Tb/s 

Mirror array 8 x 8 x 1024 8 x 8 x 1024 2 x (16 x 1024 x 8,184) 
Mirror size 3µm x 3µm 1µm x 1µm 1µm x 1µm 

Chip dimensions 2mm x 5mm 0.7mm x 1.7mm 24mm x 26mm 
Power 560mW 60mW ~15W 
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