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Abstract. This paper presents a modular optimization framework for custom 
digital circuits in the power � performance space. The method uses a static 
timer and a nonlinear optimizer to maximize the performance of digital circuits 
within a limited power budget by tuning various variables such as gate sizes, 
supply, and threshold voltages. It can employ different models to characterize 
the components. Analytical models usually lead to convex optimization prob-
lems where the optimality of the results is guaranteed. Tabulated models or an 
arbitrary timing signoff tool can be used if better accuracy is desired and al-
though the optimality of the results cannot be guaranteed, it can be verified 
against a near-optimality boundary. The optimization examples are presented 
on 64-bit carry-lookahead adders. By achieving the power optimality of the un-
derlying circuit fabric, this framework can be used by logic designers and sys-
tem architects to make optimal decisions at the microarchitecture level. 

1   Introduction 

Integrated circuit design has seamlessly entered the power-limited scaling regime, 
where the traditional goal of achieving the highest performance has been displaced by 
optimization for both performance and power. Solving this optimization problem is a 
challenging task due to a combination of discrete and continuous constraints and the 
difficulty in incorporating costs for both energy and delay in the objective functions. 

System designers typically bypass this problem by forming a hybrid metric, such 
as MIPS/mW, for evaluating candidate microarchitectures. Similarly, designs at the 
circuit level are evaluated based on metrics that combine energy and delay, such as 
the energy-delay product (EDP). A circuit designed to have the minimum EDP, how-
ever, may not be achieving the desired performance or could be exceeding the given 
energy budget. As a consequence, a number of alternate optimization metrics have 
been used that generally attempt to minimize the EmDn product [1]. By choosing pa-
rameters n and m a desired tradeoff between energy and delay can be achieved, but 
the result is difficult to propagate to higher layers of design abstraction. 

In contrast, a more systematic and general solution to this problem minimizes the 
delay for a given energy constraint [2]. Note that a dual problem to this one, minimi-
zation of the energy subject to a delay constraint yields the same solution.  

Custom datapaths are an example of power-constrained designs where the design-
ers traditionally iterate in sizing between schematics and layouts. The initial design is 
sized using the wireload estimates and is iterated through the layout phase until a set 
delay goal is achieved. The sizing is refined manually using the updated wireload 
estimates. Finally, after minimizing the delay of critical paths, the non-critical paths 
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are balanced to attempt to save some power, or in case of domino logic to adjust the 
timing of fast paths. This is a tedious and often lengthy process that relies on the 
designer�s experience and has no proof of achieving optimality. Furthermore, the 
optimal sizing depends on the chosen supply and transistor thresholds. An optimal 
design would be able to minimize the delay under power constraints by choosing 
supply and threshold voltages, gate sizes or individual transistor sizes, logic style 
(static, domino, pass-gate), block topology, degree of parallelism, pipeline depth, 
layout style, wire widths, etc.  

Custom circuit optimization under constraints has been automated in the past. 
IBM�s EinsTuner [3] uses a static timing formulation and tunes transistor sizes for 
minimal delay under total transistor width constraints. It uses simulation instead of 
modeling for best accuracy, but it only guarantees local optimality. TILOS [4] solves 
a convex optimization problem that results from the use of Elmore�s formula for gate 
delays. While the models are rather inaccurate due to their simplicity, the result is 
guaranteed to be globally optimal. 

This paper builds on similar ideas and presents a modular design optimization 
framework for custom digital circuits in the power � performance space that: 

• Formulates the design as a mathematical optimization problem; 
• Uses a static timer to perform all circuit-related computations, thus relieving the 

designer from the burden of providing input patterns; 
• Uses a mathematical optimizer to solve the optimization problem numerically; 
• Adjusts various design variables at different levels of abstraction; 
• Can employ different models in the timer in order to balance accuracy and con-

vergence speed; 
• Handles various logic families (static, dynamic, pass-gate) due to the flexibility of 

the modeling step; 
• Guarantees the global optimality of the solution for certain families of analytical 

models that result in the optimization problem being convex; 
• Verifies a near-optimality condition if optimality cannot be guaranteed. 

2   Design Optimization Framework 

The framework is built around a versatile optimization core consisting of a static 
timer in the loop of a mathematical optimizer, as shown in Fig. 1. 

The optimizer passes a set of specified design variables to the timer and gets the 
resulting cycle time (as a measure of performance) and power of the circuit, as well 
as other quantities of interest such as signal slopes, capacitive loads and, if needed, 
design variable gradients. The process is repeated until it converges to the optimal 
values of the design parameters, as specified by the desired optimization goal. The 
circuit is defined using a SPICE-like netlist and the static timer employs user-
specified models in order to compute delays, cycle times, power, signal slopes etc.  

Since the static timer is in the main speed-critical optimization loop, it is imple-
mented in C++ to accelerate computation. It is based on the conventional longest path 
algorithm. The current timer does not account for false paths or simultaneous arrivals, 
but it can be easily substituted with a more sophisticated one because of the modular-
ity of the optimization framework. 
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Fig. 1. Design optimization framework Fig. 2. Typical optimal energy � delay 
tradeoff curve for a combinational circuit 

Adjust GATE SIZES in order to Minimize DELAY subject to: 

Maximum ENERGY PER TRANSITION, Maximum internal slopes, Maximum out-
put slopes, Maximum input capacitances, Minimum gate sizes 

Additional constraints on signal slopes and minimum gate sizes are inserted in or-
der to ensure manufacturability and correct circuit operation. By solving this optimi-
zation problem for different values of the energy constraint, the optimal energy-delay 
tradeoff curve for that circuit is obtained, as shown in Fig. 2. 

The optimal tradeoff curve has two well defined end-points: point 1 represents the 
fastest circuit that can be designed; point 2 represents the lowest power circuit, 
mainly limited by minimum gate sizes and signal slope constraints. The points in-
between the two extremes (marked �3� on the graph) correspond to minimizing vari-
ous EmDn design goals (such as the well known energy � delay product, EDP). 

3   Models 
The choice of models in the static timer greatly influences the convergence speed and 
robustness of the optimizer. Analytical or tabulated models can be used in the optimi-
zation framework, depending on the desired accuracy and speed targets. Table 1 
shows a comparison between the two main choices of models. 

3.1   Analytical Models 

In our initial optimizations we use a simple, yet fairly accurate analytical model. This 
model allows for a convex formulation of the resulting optimization problem, where 
the gate sizes are the optimization variables. The model has three components: a de-
lay equation (1), a signal slope equation (2), and an energy equation (3): 
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Equation (1) is an extension of the simple linear model used in the method of logi-
cal effort [5], or the level-1 model with limited accuracy in commercial logic synthe-
sis tools[6]. Equations (1) and (2) are a straightforward first order extension to these 
models  that accounts for signal slopes.  
The capacitance of a node is computed using (4): 
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where Wi are the corresponding gate sizes. 
Each input of each gate is characterized for each transition by a set of seven pa-

rameters: p, g, η for the delay, λ, µ, ν for the slope and k for the capacitance. Each 
gate is also characterized by an average leakage power Pleak measured when its rela-
tive size is W=1. Each node of the circuit has an activity factor α, which is computed 
through logic simulation for a set of representative input patterns.  

All the above equations can be written as posynomials in the gate sizes, Wi: 
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If tslope_in is a posynomial, then tD and tslope_out are also posynomials in Wi. By speci-
fying fixed signal slopes at the primary inputs of the circuit, the resulting slopes and 
arrival times at all the nodes will also be posynomials in Wi. The maximum delay 
across all paths in the circuit will be the maximum of several posynomials, hence a 
generalized posynomial. A function f is a generalized posynomial if it can be formed 
using addition, multiplication, positive power, and maximum selection starting from 
posynomials [7]. 

The energy equation is also a generalized posynomial: the first term is just a linear 
combination of the gate sizes while the second term is another linear combination of 
the gate sizes multiplied by the cycle time, that in turn is related to the delay through 
the critical path, hence also a generalized posynomial. 

The optimization problem described in Sect. 2 using the above models has general-
ized posynomial objective and constraint functions: 

Adjust Wi in order to Minimize max(tarrival, primary_outputs) subject to: 

E≤ Emax, tslope, primary outputs ≤ tslope_out,max ,tslope, internal nodes ≤ tslope internal, max ,Cprimary in-

puts ≤ Cin,max , Wi≥ 1. 

Table 1. Comparison between analytical and tabulated models 

ANALYTICAL MODELS TABULATED MODELS 
- limited accuracy + very accurate 
+ fast parameter extraction - slow to generate 
+ provide circuit operation insight - no insight in the operation of the circuit 
+ can exploit mathematical properties to 
formulate a convex optimization problem 

- can�t guarantee convexity; optimization is 
�blind� 
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Such an optimization problem with generalized posynomials is called a general-
ized geometric program (GGP) [7]. It can be converted to a convex optimization 
problem using a simple change of variables: 

( )ii zW exp=  (7) 
With this change of variables the problem is tractable and can be easily and relia-

bly solved by generic commercial optimizers. Moreover, since in convex optimiza-
tion any local minimum is also global, the optimality of the result is guaranteed.  

This delay model applies to any logic family where a gate can be represented 
through channel-connected components [8], as in the case of complementary CMOS 
or domino logic. The limitation of this approach is that it uses linear approximations 
for the delay, signal slopes, and capacitances. Fig. 3 shows a comparison of the actual 
and predicted delay for the rising transition of a gate for a fixed input slope and vari-
able fanout. Since the actual delay is slightly concave in the fanout, the linear model 
is pessimistic at low and high fanouts and optimistic in the mid-range. 

3.2   Tabulated Models 

If the accuracy of such linear, analytical models is not satisfactory tabulated models 
can be used instead. For instance, (1), (2) and their respective parameters can be re-
placed with the look-up table shown in Table 2. 

The table can have more or less entries, depending on the desired accuracy and 
density of the grid. Actual delays and slopes used in the optimization procedure are 
obtained through linear interpolation between the points in the table. The grid is non-
uniform, with more points in the mid-range fanouts and slopes, where most designs 
are likely to operate. Additional columns can be added to the tables for different logic 
families � for instance relative keeper size for dynamic gates. 

The resulting optimization problem, even when using the change of variables from 
(7), cannot be proven to be convex. However, since the analytical models describe the 
correct behavior of the circuits (although not absolutely accurate), the resulting opti-
mization problem is nearly-convex and can still be solved with very good accuracy 
and reliability by the same optimizers as before [9]. The result of the nearly-convex 
problem can be checked against a near-optimality boundary. The example in Fig. 4 
shows a comparison of the analytical and tabulated models and the corresponding 
near-optimality boundary. 

The figure shows the energy-delay tradeoff curves for an example 64-bit Kogge-
Stone carry tree in static CMOS using a 130nm process. The same circuit is opti-
mized using each of the two model choices discussed in this section. 

Table 2. Example of a tabulated delay and slope model (NOR2 gate, input A, rising transition) 

Cload/Cin tslope_in tD tslope_out 

1 20 ps 19.3 ps 18.3 ps 
� � � � 
10 200 ps 229.6 ps 339.8 ps 

Both models show that the fastest static 64-bit carry tree can achieve the delay of 
approx. 560ps, while the lowest achievable energy is 19pJ per transition. The analyti-
cal models are slightly optimistic because the optimal designs exhibit mid-range gate 
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fanouts where the analytical models tend to underestimate the delays (Fig 3.). How-
ever, the models indeed exhibit the correct behavior without being grossly inaccurate. 

  

Fig. 3. Accuracy of fitted models Fig. 4. Analytical vs. tabulated models and 
near-optimality boundary 

The near optimality boundary is obtained by using tabulated models to compute 
the delay and energy of the designs resulted from the optimization with analytical 
models. This curve represents a set of designs optimized using analytical models, but 
evaluated with tabulated models. Since those designs are guaranteed to be optimal for 
analytical models, the boundary is within those models� error of the actual global 
optimum. However, if an optimization using the correct models (tabulated) converges 
to the correct solution, it will always yield a better result than a re-evaluation of the 
results of a different optimization using the same models. Therefore, if the optimiza-
tion with tabulated models is to converge correctly the result must be within the near-
optimality boundary (e.g. smaller delay for the same energy). 

If a solution obtained using tabulated models is within the near-optimality bound-
ary it will deemed �near-optimal� and hence acceptable. 

In a more general interpretation, optimizing using tabulated models is equivalent to 
optimizing using a trusted timing signoff tool whose main feature is very good accu-
racy. The result of such an optimization is not guaranteed to be globally optimal. The 
near-optimality boundary is obtained by running the timing signoff tool on a design 
obtained from an optimization that can guarantee the global optimality of the solu-
tion. The comparison is fair because the power and performance figures on both 
curves are evaluated using the same (trusted and accurate) timing signoff tool. 

3.3   Model Generation and Accuracy 

Tabulated models are generated through simulation. The gate to be modeled is placed 
in a simple test circuit and the fanout and input slope are adjusted using perl scripts. 
The simulator is invoked iteratively for all the points in the table and the relevant 
output data (delay, output slope) is stored. This can be lengthy (although paralleliz-
able) if the grid is very fine and the number of points large. This characterization is 
similar to the one performed for the standard-cell libraries, and yields satisfactory 
accuracy.  

For the analytical models data points are obtained through simulation in the same 
manner as for tabulated models. Least squares fitting (in Matlab) is used to obtain the 
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parameters of the models. The number of points required for a good fit (50 � 100, 
depending on the model) is less than the number of points needed for tabulated mod-
els (at least 1000) and thus the characterization time for analytical models is one or-
der of magnitude shorter. 

The error of the analytical models depends on their complexity and on the desired 
data range. The models in (1) and (2) are accurate within 10% of the actual delays 
and slopes for the range specified in Table 2. The energy equation (3) is accurate 
within 5% for fast slopes but its accuracy degrades to 12% underestimation at slow 
input sloped due to the crowbar current (which is not accounted for). The maximum 
slope constraints for output and internal nodes ensure such worst cases do not occur 
in usual designs. 

4   Results 

We use the presented optimization framework to optimize a 64-bit adder, which is a 
very common component of custom datapaths. The critical path of the adder consists 
of the carry computation tree and the sum select [10]. Tradeoffs between the per-
formance and power can be performed through the selection of circuit style, logic 
design of carry equations, selection of a tree that calculates the carries, as well as 
through sizing and choices of supply voltages and transistor thresholds.  

Carry-lookahead adders are frequently used in high-performance microprocessor 
datapaths. Although adder design is a well-documented research area [11,12,13,14], 
fundamental understanding of their energy-delay performance at the circuit level is 
still largely invisible to the microarchitects. The optimization framework presented in 
this paper provides a means of finding the energy budget breakpoint where the archi-
tects should change the underlying circuit design. 

Datapath adders are good example for the optimization because their layout is of-
ten bit-sliced. Therefore, the critical wire lengths can be estimated pre-design and are 
a weak function of gate sizing. The optimization is performed on two examples:  

1. A 64-bit Kogge-Stone adder carry tree implemented in standard static CMOS, 
using analytical models to tune gate sizes, supply and threshold voltages; 

2. 64-bit carry lookahead adders implemented in domino and static CMOS, using 
tabulated models. 

4.1   Tuning Sizes, Supply and Threshold Using Analytical Models 

In order to tune supply and threshold voltages, the models must include their depend-
encies. A gate equivalent resistance can be computed from analytical saturation cur-
rent models (a reduced form of the BSIM3v3 [15,16]):  
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Using (8), supply and threshold dependencies can be included in the delay model. For 
instance (1) becomes (9), with (2) having a very similar expression: 
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The model is accurate within 8% of the actual (simulated) delays and slopes 
around nominal supply and threshold, over a reasonable yet limited range of fanouts 
(2.5 � 6). For a +/- 30% range in supply and threshold voltages the accuracy is 15%.  

Fig. 5 shows the optimal energy-delay tradeoff curves of a 64-bit Kogge-Stone 
carry tree implemented in static CMOS in three cases: 

1. Only gate sizes are optimized for various fixed supplies and the nominal thresh-
old; 

2. Gate sizes and supply are optimized for nominal threshold; 
3. Gate sizes, supply and threshold voltage are optimized jointly. 

Fig. 6 shows the corresponding optimal supply voltage for case 2 and Fig. 7 shows 
the corresponding optimal threshold for case 3 normalized to the nominal threshold 
voltage of the technology. 

A few interesting conclusions can be drawn from the above figures: 

• The nominal supply voltage is optimal in exactly one point, where the VDD = 1.2V 
curve is tangent to the optimal VDD curve. In that point, the sensitivities of the de-
sign to both supply and sizing are equal [2]; 

• Power can be reduced by increasing VDD and downsizing if the VDD sensitivity is 
less than the sizing sensitivity; 

• The last picosecond is very expensive to achieve because of the large sizing sensi-
tivity (curves are very steep at low delays); 

• The optimal threshold is well below the nominal threshold. For such a high activ-
ity circuit, the power lost through increased leakage is recuperated by the down-
sizing afforded by the faster transistors with lower threshold. Markovic et al, [2], 
came to a similar conclusion using a slightly different approach. 

4.2   Tuning Sizes in 64-Bit CLA Adders Using Tabulated Models 

Using tabulated models as described in Sect. 3, various adder topologies implemented 
in different logic families are optimized in the energy�delay space under the typical 
loading for a microprocessor datapath. Details about the logic structure of the adders 
can be found in [17]. Fig. 8 shows the energy � delay tradeoff curves for a few repre-
sentative adder configurations. Radix-2 (R2) adders merge 2 carries at each node of 
the carry tree. For 64 bits, the tree has 6 stages of relatively simple gates. Radix-4 
(R4) adders merge 4 carries at each stage, and therefore a 64-bit tree has only 3 stages 
but the gates are more complex. In the notation used in Fig. 8 classical domino adders 
use only (skewed) inverters after a dynamic gate, whereas compound domino use 
more complex static gates, performing actual radix-2 carry-merge operations [18]. 

Based on these tradeoff curves, microarchitects can clearly determine that under 
these loading conditions radix-4 domino adders are always preferred to radix-2 dom-
ino adders. For delays longer than 12.5 FO4 inverter delays, a static adder is the pre-
ferred choice because of its lower energy.  

Static adders are generally low power but slow, while domino logic is the choice 
for short cycle time. The fastest adder implements Ling�s pseudo-carry equations in a 
domino radix-4 tree with a sparsness factor of 2 [17]. 
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Fig. 5. Energy - delay tradeoff curves for 
different sets of optimization variables 

Fig. 6. Optimal supply voltage for designs 
sized with nominal threshold voltage 

 

Fig. 7. Optimal threshold voltage when all 
optimizations are performed simultaneously 

Fig. 8. Energy � delay tradeoff curves for 
selected 64-bit CLA adders 

4.3   Runtime Analysis 

The complexity and runtime of the framework depend on the size of the circuit. Small 
circuits are optimized almost instantaneously. A 64-bit domino adder with 1344 gates 
(a fairly large combinational block) is optimized on a 900MHz P3 notebook computer 
with 256MB of RAM in 30 seconds to 1 minute if the constraints are rather lax. 
When the constraints are particularly tight and the optimizer struggles to keep the 
optimization problem feasible, the time increases to about 3 minutes. A full power � 
performance tradeoff curve with 100 points can be obtained in about 90 minutes on 
such a machine. For grossly infeasible problems the optimizer provides a �certificate 
of infeasibility� in a matter of seconds. 

For large designs the framework allows gate grouping. By keeping the same rela-
tive aspect ratio for certain groups of gates, the number of variables can be reduced 
and the runtime kept reasonable. Gate grouping is a natural solution for circuits with 
regular structure. All the adders optimized in Sect. 4.1 and 4.2 use gate grouping for 
identical gates in the same stage. 

5   Conclusions 

This paper presents a design optimization framework that tunes custom digital cir-
cuits based on a static timing formulation. The framework can use a wide variety of 
models and tune different design variables. The problem solved is generally an en-
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ergy-constrained delay minimization. Due to the flexibility in choosing models, the 
framework can easily handle various logic families. 

If analytical models are used the optimization is convex, can be easily and reliably 
solved, and its results are guaranteed to be optimal. The accuracy of the modeling can 
be improved by using look-up tables, at the cost of the optimality guarantee as well as 
increased characterization time and complexity. More generally, the optimization can 
be run on any trusted and accurate timing signoff tool, with the same tradeoffs and 
limitations as for tabulated models. Results obtained using tabulated models (or with 
the said �trusted and accurate timing signoff tool�) can be verified against a near-
optimality boundary computed from results guaranteed optimal in their class. If the 
results fall within that boundary they are considered near-optimal and therefore ac-
ceptable. 

The framework was demonstrated on 64-bit carry-lookahead adders in 130nm 
CMOS. A static Kogge-Stone tree was tuned using analytical models by adjusting 
gate sizes, supply voltage, and threshold voltage. Complete domino and static 64-bit 
adders were also tuned in a typical high performance microprocessor environment 
using tabulated models by adjusting gate sizes. 

We are extending this framework to optimize the latch positions in pipelined 
datapaths. By building on the combinational circuit optimization, this tool would 
allow microarchitects a larger freedom in trading off cycle time for latency. 
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