
A general method in synthesis of pass-transistor circuits

D. Markovića,* , B. Nikolićb, V.G. Oklobdžijac

aDepartment of Electrical Engineering and Computer Sciences, 211-149 Cory Hall #1772, University of California, Berkeley, CA 94720-1772, USA
bDepartment of Electrical Engineering and Computer Sciences, 570 Cory Hall, University of California, Berkeley, CA 94720-1770, USA

cIntegration Corporation, 1285 Grizzly Peak Blvd, Berkeley, CA 94708, USA

Abstract

A general method in synthesis and signal arrangement in different pass-transistor network topologies is analyzed. Several pass-transistor
logic families have been introduced recently, but no systematic synthesis method is available that takes into account the impact of signal
arrangement on circuit performance. In this paper we develop a Karnaugh map based method that can be used to efficiently synthesize pass-
transistor logic circuits, which have balanced loads on true and complementary input signals. The method is applied to the generation of basic
two-input and three-input logic gates in CPL, DPL and DVL. The method is general and can be extended to synthesize any pass-transistor
network.q 2000 Elsevier Science Ltd. All rights reserved.

Keywords: CMOS; Digital integrated circuits; Pass-transistor logic; Logic synthesis; Karnaugh maps

1. Introduction

During the last decade, extensive considerations have
been given to the use of pass-transistor logic networks in
the implementation of digital systems [1], however, to the
best of our knowledge, there is still no systematic pass-
transistor circuit synthesis approach exists, that takes into
account the impact of circuit technology and signal arrange-
ments on circuit performance.

A literature survey [1] shows that there are two main
approaches to synthesize pass-transistor circuits: (1) transis-
tor-level synthesis based on decision diagrams [2,3], and (2)
library-based synthesis [4]. Both approaches are suitable for
development of CAD algorithms. The first approach has
more flexibility in circuit optimization because it is transis-
tor based, but the optimization of large logic networks is
difficult. The difficulties are problems related to termination
of signals and insertion of repeaters into long transistor
chains, and problems with verification of circuit function-
ality and correctness of output logic levels. The second
approach is based on building a small set of optimized
basic library components, and synthesizing large networks
from them.

The focus of this work is to develop a unified method for
mapping logic functions into circuit realizations using
different pass-transistor logic styles. The method is based
on the Karnaugh map representation of a logic function,

with optimization of the corresponding circuit realization.
This method is convenient for library-based synthesis since
it can easily generate optimized basic logic gates, which are
the main building blocks in library-based designs. It is
simple and intuitive, and can be extended to generate larger
logic functions, as will be discussed in more detail in
Section 4.

Section 2 gives an overview of three conventional pass-
transistor logic families (Complementary pass-transistor
logic (CPL), double pass-transistor logic (DPL), and dual
value logic (DVL)). Section 3 describes a general method to
synthesize basic two-input and three-input logic gates
(AND/NAND, OR/NOR, and XOR/XNOR) in each of
these families, and discusses balancing input loads of the
gates. Section 4 introduces an example how the same
general framework can be used to synthesize complemen-
tary CMOS circuits. Section 5 concludes the paper.

2. Pass-transistor logic families

There are two main pass-transistor circuit styles: those
that use NMOS only pass-transistor circuits, like CPL [7],
and those that use both NMOS and PMOS pass-transistors,
DPL [5] and DVL [6].

2.1. Complementary pass-transistor logic

Complementary pass-transistor logic [7] consists of
complementary inputs/outputs, a NMOS pass-transistor
network, and CMOS output inverters. The circuit function

Microelectronics Journal 31 (2000) 991–998

Microelectronics
Journal

0026-2692/00/$ - see front matterq 2000 Elsevier Science Ltd. All rights reserved.
PII: S0026-2692(00)00088-4

www.elsevier.com/locate/mejo

* Corresponding author. Tel.:11-510-666-3124; fax:11-510-883-0270.
E-mail address:dejan@eecs.berkeley.edu (D. Markovic´).



is implemented as a tree consisting of pull-down and pull-up
branches. Since the threshold voltage drop of NMOS
transistor degrades the “high” level of pass-transistor output
nodes, the output signals are restored by CMOS inverters.
CPL has traditionally been applied to the arithmetic build-
ing blocks [7–9] and has been shown to result in high-speed
operation due to its low input capacitance and reduced
transistor count.

2.2. Double pass-transistor logic

To avoid problems of reduced noise margins in CPL, twin
PMOS transistor branches are added to N-tree in DPL [5].
This addition results in increased input capacitances.
However its symmetrical arrangement and double-transmis-
sion characteristics compensate for the speed degradation
arising from increased loading. The full swing operation
improves circuit performance at reduced supply voltage
with limited threshold voltage scaling.

2.3. Dual value logic

The main drawback of DPL is its redundancy, i.e. it
requires more transistors than actually needed for the realiza-
tion of a function. To overcome the problem of redundancy, a

new logic family, DVL [6,10], is derived from DPL. It
preserves the full swing operation of DPL with reduced
transistor count. As introduced in [6], DVL circuit can be
derived from DPL circuits in three steps, consisting of:

• Elimination of redundant branches
• Signal rearrangement (resize)
• Selection of the faster halves.

3. General synthesis method

The logic gate design presents a systematic implementa-
tion of a logic function. When new pass-transistor families
are introduced, [5,7], the emphasis is usually given on their
suitability for block design, and less attention is paid to the
tradeoffs in the design of basic logic gates. The method
presented in this paper is based on Karnaugh map coverage
and circuit transformations as an approach to logic gate
design. The algorithm is used to synthesize basic logic
gates (AND/NAND, OR/NOR, and XOR/XNOR) in three
conventional pass-transistor techniques. The algorithm effi-
ciency is enhanced by duality and complementarity princi-
ples. Using these principles, starting for example from

D. Markovićet al. / Microelectronics Journal 31 (2000) 991–998992

Fig. 1. Illustration of duality principle applied to synthesize CPL gates.



realization of AND circuit with simple transformations, one
can obtain complementary and dual functions (NAND, OR/
NOR) using the same circuit structure, improving the library
versatility. Such framework applies to the design of basic
logic gates in three conventional pass-transistor logic tech-
niques, CPL, DPL, and DVL.

3.1. Complementary pass-transistor logic

A general method of Karnaugh map coverage and
mapping into circuit realizations is applied to design logic
AND/NAND, OR/NOR, and XOR/XNOR gates in CPL.
The method consists of the implementation of the gates
from Karnaugh maps, and further simplifications: comple-

mentarity and duality principles that easily generate entire
set of two-input and three-input logic gates.

The rules for Karnaugh map coverage and circuit
realization in CPL are given below:
1. Cover Karnaugh-map with largest possible cubes (over-

lapping allowed).
2. Derive the value of a function in each cube in terms of

input signals.
3. Assign one branch of transistor(s) to each of the cubes

and connect all branches to one common node, which is
the output of NMOS pass-transistor network.

The generation of complementary and dual functions is
simple, by observing the basic properties of these gates. The

D. Markovićet al. / Microelectronics Journal 31 (2000) 991–998 993

Fig. 2. Synthesis of two-input functions: (a) Karnaugh map of AND function; (b) circuit realization of AND/NAND function; and (c) circuit realization of OR/
NOR function.

Fig. 3. Synthesis of two-input functions with balanced input load.

Fig. 4. Circuit realization of two-input XOR/XNOR function.



complementary logic function can be obtained from the same
circuit structure by applying the complementarity principle.

Complementarity principle:
The same circuit topology, with inverted pass signals,

produces the complementary logic function in CPL.
The complementarity principle holds in CPL since the

pass variables are directly passed from the inputs to the
outputs, so an inversion of the pass variables gives comple-
mentary function.

The dual logic function can be obtained by applying the
duality principle.

Duality principle:
The same circuit topology, with inverted gate signals,

gives the dual logic function. The dual logic functions are:

• AND–OR;
• NAND–NOR; and
• XOR, XNOR are self-dual (dual to itself).

The duality principle follows from DeMorgan’s rules,
and it is illustrated by the example of AND to OR transfor-
mation, Fig. 1.

The procedure of a logic gate design is shown using an
example of two-input AND function, Fig. 2. CubesC1 and
C2 cover all input vectors in Fig. 2a. The value of the func-
tion covered by cubeC1 is equal toB, which becomes pass
signal terminating to the source of the transistor branch.
BranchC1 is driven withB̄ on its gate, which passesB signal

when B̄ is high. Similarly for cubeC2, pass variable is the
input signalA, driven by the gate signalB. These two cubes
correspond to two NMOS transistor branches, implementing
the desired function. By applying complementarity princi-
ple to the AND circuit, the NAND circuit is obtained, Fig.
2b. Furthermore, by applying duality principle on AND,
two-input OR function is synthesized. The NOR circuit is
then generated from OR (complementarity) or from NAND
(duality), Fig. 2c.

3.1.1. Complementary pass-transistor logic gates with
balanced input loads

In AND/NAND circuit, Fig. 2b, loads on input signalsA,
Ā, B, andB̄ are not equal. However, two-input gates shown
in Fig. 2 are commutative with respect to input signals, i.e.
signalsA and B could be swapped without affecting the
circuit operation. With swapped inputs in the NAND circuit
in Fig. 2a, resulting AND/NAND circuit has the same input
loading, Fig. 3.

Cin � Cdrain 1 Cgate �1�
However, the layout of circuits shown in Fig. 3 would
require more area due to increased wiring complexity.
Balanced loads also do not always result in balanced
delay of true and complementary signals, because signal
transitions do not traverse the same paths in true and
complementary circuits. For example, whenB changes
from the logic “high” to logic “low”, andA is “high”, the
output of the AND gate changes from “low” to “high”,
becausegate signals (B, B̄) are switching. On the other
hand, the output of the NAND gate changes from “high”
to “low”, becausesourcesignal B̄ is switching. These two
different paths: gate-to-output, and source-to-output, result
in difference in rising and falling delays of true and
complementary output signals.

Circuit realization of two-input XOR/XNOR function
with balanced input loads is shown in Fig. 4.

The XNOR function is obtained from XOR by applying
the complementarity principle, and swapping input vari-
ables for balanced input load. Since the number of transis-
tors is the same, and input signals are passed to the output in

D. Markovićet al. / Microelectronics Journal 31 (2000) 991–998994

Fig. 5. Circuit realization of three-input AND/NAND function.

Fig. 6. Circuit realization of three-input OR/NOR function.



function implementation, the load presented to the input
variables is the same as in circuits shown in Fig. 3, and is
given by Eq. (1).

However, balancing loads is not always possible, because
it depends on circuit realization and number of inputs. Fig. 5
shows a single-stage implementation of three-input AND/
NAND function.

There are a total of 14 terminals, and 8 signals in Fig. 5,
resulting in imbalanced inputs. If the functions were imple-
mented as two-stage realizations composed of two-input
modules with balanced loads, the loading would remain
balanced.

Example in Fig. 5 also illustrates the reduction in transis-
tor count by overlapping the cubesC1 and C3. It has a
consequence that the corresponding branches are active
for the input vectors where the cubes are overlapped, saving
the circuit area.

Realization of three-input OR/NOR circuit, Fig. 6, is
straightforward if complementarity and duality is applied
to circuit shown in Fig. 5. A three-input XOR/XNOR circuit
in CPL is typically composed of two-input XOR/XNOR
modules [7].

3.2. Double pass-transistor logic

DPL has twice as many transistors as CPL for the same
function. Design of DPL is based on covering every input
vector in the Karnaugh map twice.

The rules to synthesize random logic function in DPL
from the Karnaugh map are:

1. Two NMOS branches cannot be overlapped on logic
“1”s. Similarly, two PMOS branches cannot be over-
lapped on logic “0”s.

2. Pass signals are expressed in terms of input signals or
supply. Every input vector has to be covered with exactly
two branches.

At any time, excluding transients, exactly two transistor
branches are active, and any of the pairs NMOS–PMOS,
NMOS–NMOS, and PMOS–PMOS are possible, depend-
ing on circuit implementation and input vectors.

Complementarity principle:
The complementary logic function in DPL is generated

after the following modifications of the true function:

• Swap PMOS and NMOS transistors; and
• Invert all pass and gate signals.

To obtain a complementary function, it is necessary to
invert both the pass signals and the gate signals since the
PMOS and NMOS transistors are swapped.

Duality principle:
The dual logic function in DPL is generated when PMOS

and NMOS transistors are swapped, andVdd and GND are
swapped.

The design of a DPL two-input AND function is
shown in Fig. 7. CubeC1 of Fig. 7a is mapped to a
NMOS transistor, with the source connected to ground
and the gate connected toB̄. Cube C2 is mapped to a
PMOS transistor, which passesA, when gate signalB̄ is
“low”. The NMOS transistor ofC3 pulls down to ground,
when A is “low”, and the PMOS transistor ofC4 passes
B, when A is “high”. Complementary circuit (NAND),
Fig. 7b, is generated from AND, according to the
complementarity principle.

Following the duality principle, OR circuit is formed
from AND circuit, Fig. 8.

Different two-input XOR/XNOR circuit arrangements are
possible. Fig. 9 shows a realization with balanced load on
both true and complementary input signals.

D. Markovićet al. / Microelectronics Journal 31 (2000) 991–998 995

Fig. 7. Circuit realization of two-input AND/NAND function in DPL.

Fig. 8. Circuit realization of two-input OR/NOR function in DPL.



Three-input functions in DPL are implemented as
cascaded combinations of two-input DPL modules.

3.3. Dual value logic

The rules to synthesize random logic function in DVL
from the Karnaugh map are given below:

1. Cover with largest possible cubes all input vectors that
produce “0” at the output, (overlapping allowed) and
represent those cubes with NMOS devices, with sources
connected to GND.

2. Repeat Step 1 for input vectors that produce “1” at the
output and represent those cubes with PMOS devices,
with sources connected toVdd.

3. Finish with mapping input vectors, not mapped in Steps 1
and 2 (overlapping with cubes from Steps 1 and 2
allowed) that produce”0” or “1” at the output. Represent
those cubes with parallel NMOS (good pull-down) and
PMOS (good pull-up) branches, with sources connected
to one of the input signals.

The complementarity and duality principles are identical
as in DPL, since both DPL and DVL are CMOS structures.

Generation of two-input AND/NAND function is shown
in Fig. 10.

Note that circuit realizations with balanced loads are not
possible. Signals in brackets in Fig. 10b show another possi-
ble signal arrangement in the implementation of NAND
function. Lower part of both circuits remains the same if
input signals are swapped, only the upper branch changes.
Optimal signal arrangement depends on circuit environment
and switching probabilities of input signals.

Efficient realization of two-input OR/NOR circuits is
shown in Fig. 11.

Realization of two-input XOR/XNOR circuit is identical
to DPL, Fig. 9. Circuit implementation of three-input
circuits in DVL is shown in Fig. 12.

Overlapping cubesC1 andC2, Fig. 12, saves area, which
allows for wider transistors for cubeC3. The OR/NOR

D. Markovićet al. / Microelectronics Journal 31 (2000) 991–998996

Fig. 9. Circuit realization of two-input XOR/XNOR function in DPL, with balanced input load.

Fig. 10. Circuit realization of two-input AND/NAND function in DVL.

Fig. 11. Circuit realization of two-input OR/NOR circuit in DVL.



circuit, directly generated from the AND circuit, is shown in
Fig. 13.

4. Discussion

Synthesis of large pass-transistor networks is a
challenging problem. The method presented in Section 3
can be extended to synthesize larger functions, as well as
to synthesize complementary CMOS circuits. Complemen-
tary CMOS logic is a special case of pass-transistor logic,
constrained that all source signals must terminate toVdd or
GND. Complementary CMOS circuit synthesized from
Karnaugh map can be compared to two different realizations
in DVL technique that correspond to different mappings.

Consider the function

F � �BC 1 AB �C �2�
and its three different realizations shown in Fig. 14. All three

circuits have the same number of input signals, so the total
input and output load determine the total switching capaci-
tance and energy consumption. The complementary CMOS,
Fig. 14d has small load on input signals and internal output
load, compared to DVL realization in Fig. 14e. Two realiza-
tions of DVL show different mapping strategies: first strategy
consists of covering the map with largest possible cubes, Fig.
14b, while the second strategy, Fig. 14c, is based on map
decomposition and reduction to implementation of basic
two-input functions. The DVL realization in Fig. 14f has smal-
lest total load on input signals, and similar internal output load
as complementary CMOS realization, as shown in Table 1.

This example illustrates the importance of efficient cover-
age of Karnaugh map, and circuit optimization. Straightfor-
ward coverage of Karnaugh map with largest cubes, as
shown in Fig. 14b results in a circuit with lower perfor-
mance, Fig. 14e, while more careful coverage with splitting
of variables, Fig. 14c, results in a circuit with both smaller
transistor stack and smaller transistor count, Fig. 14f.

D. Markovićet al. / Microelectronics Journal 31 (2000) 991–998 997

Fig. 12. Circuit realization of three-input AND function in DVL.

Fig. 13. Circuit realization of three-input OR/NOR functions in DVL.

Table 1
Comparison of different realizations of three-input functionF � B 0C 1 ABC 0

Realization Number of input signals Signal termination Transistor Count Output load

CMOS 9 10G 10 4S
DVL (e) 9 8G1 6S 8 6S
DVL (f) 9 7G 1 3S 7 4S



5. Conclusions

General rules for synthesizing logic gates in three repre-
sentative pass-transistor techniques were developed in this
paper. An algorithmic way for generation of various circuit
topologies (complementary and dual circuits) is presented.
Generation of circuits with balanced input loads is suitable
for library-based designs. The versatility of these circuits is
increased by application of complementarity and commu-
tative principles. This lays the foundation for development
of computer aided design (CAD) tools capable of generating
fast and power-efficient pass-transistor logic.

References

[1] K. Taki, A survey for pass-transistor logic technologies — Recent
researches and developments and future prospects, Proceedings of the
ASP-DAC’98 Asian and South Pacific Design Automation Confer-
ence, Feb. 1998, pp. 223–226

[2] P. Buch, A. Narayan, A.R. Newton, A. Sangiovanni-Vincentelli,
Logic synthesis for large pass transistor circuits, Proceeding of the
IEEE International Conference on Computer-Aided Design (ICCAD),
November 1997, pp. 633–670.

[3] A. Jaekel, S. Bandyopadhyay, G.A. Jullien, Design of dynamic pass-
transistor logic using 123 decision diagrams, IEEE Trans. on CAS-I:
Fundamental Theory and Applications 45 (11) (1998) 1172–1181.

[4] K. Yano, Y. Sasaki, K. Rikino, K. Seki, Top–down pass-transistor
logic design, IEEE Journal of Solid-State Circuits 31 (6) (1996) 792–
803.

[5] M. Suzuki, et al., 1.5 ns CMOS 16× 16 multiplier using complemen-
tary pass-transistor logic, IEEE Journal of Solid-State Circuits 28 (11)
(1993) 599–602.

[6] V.G. Oklobdžija, B. Duchene, Pass-Transistor Dual Value Logic for
Low-Power CMOS, Proceedings of the 1995 International Sympo-
sium on VLSI Technology, Systems, and Applications, May–June,
1995, pp. 341–344.

[7] K. Yano, et al., 3.8 ns CMOS 16× 16-b multiplier using complemen-
tary pass-transistor logic, IEEE Journal of Solid-State Circuits 25 (2)
(1990) 388–395.

[8] I.S. Abu-Khater, A. Bellaouar, M.I. Elmasry, Circuit techniques for
CMOS low-power high-performance multipliers, IEEE Journal of
Solid-State Circuits 31 (10) (1996) 1535–1546.

[9] P.Y.K. Cheung et al., High speed arithmetic design using CPL and
DPL logic, Proceedings of the 23rd European Solid-State Circuits
Conference, September 1997, pp. 360–363.

[10] V.G. Oklobdžija, B. Duchene, Synthesis of high-speed pass-transistor
logic, IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing 44 (11) (1997) 974–976.

D. Markovićet al. / Microelectronics Journal 31 (2000) 991–998998

Fig. 14. Karnaugh map coverage of three-input function in: (a) complementary CMOS; (b) DVL; (c) DVL and corresponding circuit realizations in (d)
complementary CMOS; (e) DVL; and (f) DVL.


