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CAPACITY APPROACHING CODES,
ITERATIVE DECODING ALGORITHMS, AND

THEIR APPLICATIONS

INTRODUCTION

Error correction algorithms are frequently evalu-
ated by their bit error rate (BER) vs. signal-to-
noise ratio (SNR) performance. In practice, the
implementations of these algorithms are con-
strained by the formats and throughput/latency
requirements of specific communications stan-
dards. A practical implementation of a given
algorithm in either hardware or software is ulti-
mately evaluated by its cost (silicon area), power,
speed, latency, flexibility, and scalability.

Investigation of iterative decoder implemen-
tations is particularly interesting. Theoretically,
these decoders promise the required BERs at
significantly reduced SNRs, very close to the
Shannon limit. However, these studies are based
on complex code constructions with little consid-
eration of implementation. Practical implemen-
tation constraints will put the code construction
and encoder/decoder implementation in a differ-
ent perspective.

This article provides a view of the very large
scale integration (VLSI) constraints that affect
implementation of iterative decoders employing
belief propagation as realized through message-
passing algorithms. Such decoders rely on the
cooperative interaction between several soft
decoders over several iterations. This work

examines the two main requirements in these
decoders: message computation and exchange of
messages between the soft decoders. Both are
specified within a unified graphical framework
consisting of an interconnected network of vari-
able nodes and constraint nodes [1]. The desire
is to emphasize the implications of code con-
struction techniques on decoder implementa-
tion, beyond just BER performance. In
particular, the requirements of the two major
examples, turbo decoders and low-density parity
check (LDPC) decoders, are examined. Similar
considerations apply to related extensions of
these codes, such as block turbo codes or torna-
do codes.

COMPUTATIONAL REQUIREMENTS
Using the graphical framework associated with
iterative decoders, each node corresponds to a
processing element that evaluates the marginal
function of its input messages. Although the
decoding of iterative codes is usually described
as a sum-product algorithm on probability val-
ues, the computation is performed in the log-
probability domain. Expressing the product of
probabilities with the sum of log-probabilities or
log-likelihood ratios (LLRs) is preferred in
implementation because it replaces multipliers
with adders. However, evaluating the sum in the
log-probability domain requires a combination
of exponential and logarithmic functions. In
order to simplify the implementation, the com-
putation can be approximated with the maxi-
mum value of the input operands, followed by
an additive correction factor determined by a
table lookup.

An example of the sum-product algorithm
processed in log-probability domain is the add-
compare-select (ACS) recursion in a maximum
a posteriori (MAP) decoder (Fig. 1a). The add
operations evaluate the logarithm of two prod-
uct terms, while the compare and select opera-
tions approximate the logarithm of a sum of
exponentials. This approximation (called the
max-log-MAP) leads to an implementation loss
of about 0.5 dB in a turbo decoder system. How-
ever, adding a correction factor to the output of
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the ACS can restore the coding gain to within
0.1 dB of the MAP decoder performance [2].
This correction factor can be provided by a
table lookup based on the difference of the two
sums. Similar to commonly used Viterbi
decoders, the throughputs of MAP decoders
have been limited by implementation of the
ACS structure due to single-step recursion,
which prevents pipelining.

Another example of the sum-product compu-
tation in the log-probability domain can be
found in LDPC decoders (Fig. 1b). The simple
even parity check constraint evaluates

where pn represents the probability that a bit xn
= 1. The use of log-probability domain simpli-

fies the evaluation of the product, but also
requires the table lookup evaluation of

where LLr(xn) is defined as the log-likelihood
ratio,

It has been shown that iterative decoders
operating in the log-probability domain can fre-
quently achieve good coding performance with
arithmetic precision of just 3–5 bits. This implies
that the lookup tables can be efficiently imple-
mented with simple combinatorial logic functions
directly implementing the required function.
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� Figure 1. Arithmetic computation associated with nodes in factor graphs of a) a convolutional code; b)
an LDPC code.
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In addition to the calculations of marginal
posterior functions, practical decoder implemen-
tations can lower the energy consumption per
decoded bit by applying stopping criteria to the
decoding iterations. This is done, for instance, in
turbo codes by noting that the absolute log-like-
lihood values of all bits in a decoded block have
exceeded a preset value, thus indicating suffi-
cient confidence in the decoded output. Alterna-
tively, the iterations in an LDPC decoder can be
stopped when all parity check constraints have
been met.

MESSAGE-PASSING REQUIREMENTS
The other key implementation feature of an
iterative decoder is the interconnect network
required to facilitate the exchange of messages
between nodes in a factor graph. While each
node in the graph is associated with a certain
arithmetic computation,  each edge in the
graph defines the origin and destination of a
particular message. The implementation of the
message-passing requirements,  however,
appears in different forms for turbo and LDPC
decoders.

The turbo decoder consists of a concatena-
tion of MAP decoders separated by interleavers
that permutate the sequence of inputs. Inter-
leaving facilitates the exchange of messages
between nodes that are adjacent in more than
one of the underlying graphs. Although inter-
leaving of messages can be performed through a
direct-mapped network of interconnects for
realization of a high-throughput interleaver, this
will potentially result in intractable routing con-
gestion due to the irregular nature of the inter-
leaving network. In practice, the interleaving
function is executed by writing the relayed mes-
sages sequentially into a random access memory
array, and reading them out through a permut-
ed sequence. The order of addresses used in the
read access can be stored in separate read only
memory (ROM) or computed on the fly. The
latter method requires the addresses to be
deterministically reproducible, and exploits the
regularity in the interleaver structure to calcu-
late addresses using, say, simple shifting or
modulo division [3].

Likewise, an LDPC decoder is required to
provide a network for messages to be passed
between a large number of nodes. Direct wiring
of the network leads to congestion in the inter-
connect fabric due to the disorganized nature of
the defining graph. The congestion can be cir-
cumvented through the use of memory. Unlike
the interleavers used in turbo codes, which have
one-to-one connectivity, LDPC graphs have at
least a few edges emanating from each variable
node. The number of edges is several times larg-
er than that in an interleaver network, and hence
requires a larger memory bandwidth.

The practical implementation of a message-
passing network is dependent on the structural
properties of the graph. In general, the construc-
tion of good iterative codes requires large num-
bers of nodes whose interconnections are defined
by graphs that are expanders and have a large
girth [4]. These graphs tend to have a disorga-
nized structure, which complicates the imple-

mentation of the message-passing network by
requiring long global interconnects or memories
accessed through an unstructured addressing
pattern. More recently, graphs with structured
patterns have emerged, [5], and they simplify the
implementation of the decoders.

ITERATIVE ARCHITECTURES
The order of message computations and their
exchange distinguishes two main classes of
decoders: parallel and serial. Parallel decoder
architectures directly map the nodes of a factor
graph onto processing elements, and the edges
of the graph onto an interconnect network. The
parallel computation of messages requires the
same number of processing elements as the
number of nodes in the factor graph. On the
other hand, serial decoder architectures dis-
tribute the arithmetic requirements sequentially
among a small number of processing elements.
Due to the sparseness of the graph, there is usu-
ally a delay between the generation and con-
sumption of the messages. Hence, this technique
requires additional memory elements to store
the intermediate messages.

A parallel realization of any algorithm will
frequently be both throughput- and power-effi-
cient, at the expense of increased area. On the
other hand, serial realizations require fewer
arithmetic units, and make use of memory ele-
ments in place of complex interconnect.

TURBO DECODER ARCHITECTURES
The MAP algorithm, used as a constituent of
turbo decoders, was originally described as a
serial recursion of forward/backward message
passing. The most direct implementation of this
serialized instance of belief propagation pro-
ceeds with forward propagation while storing the
intermediate path metrics. When the end of the
sequence is reached, the direction of recursion is
reversed. Besides long decoding latency, this
approach is also subject to a large memory
requirement. For a convolutional code with con-
straint length K, the forward propagating metrics
of the 2K–1 nodes at each bit instance in the trel-
lis have to be stored until the corresponding
backward propagating metrics are available for
final processing. At a finer granularity, these
2K–1 ACS operations can either be performed by
a group of parallel ACS processors as shown in
Fig. 2 or serialized onto a single ACS processor.
In serialized architectures, interconnect between
separate ACS operators is substituted with mem-
ories or registers, but the overall throughput suf-
fers accordingly.

A common implementation technique that
achieves higher throughputs uses multiple win-
dows [6]. This approach parallelizes the mes-
sage passing algorithm over several subsets of
bit sequences by partitioning the recursions
into a number of independent overlapping win-
dows. The shorter window lengths offer the
advantage of lower latencies and reduced mem-
ory requirement for the intermediate path met-
rics. Since the propagating metrics do not cross
into neighboring windows, the memory require-
ments are reduced to the amount required for
temporary storage of propagating metrics with-
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in one window. The overlapping regions are
shown as sync blocks in Fig. 2, and their length,
L, is usually set at about five times the con-
straint length of the convolutional code. The
messages computed within the first L steps of
each recursion window in either direction are
typically discarded as they have insufficient
accuracy. This is  the arithmetic overhead
incurred by each additional parallel window in
a MAP decoder.

The overall throughput of a turbo decoder is
also dependent on the implementation of the
interleaver. Due to the size of the interleaver,
the common approach uses memory blocks, but
also places the memory access time in the criti-
cal path. Memory access is approximately 2 ns
(general-purpose single-ported 32 kb memories
in 0.13 µm complementary metal oxide semicon-
ductor, CMOS, technology), significantly more
than the 1 ns required to add two pairs of two
short-wordlength numbers and select the maxi-
mum result in the ACS decoding logic (0.13 µm
CMOS application-specific integrated circuit,
ASIC, design). Decreasing average memory
access time by increasing the number of I/O
ports is unsuitable because it leads to quadratic

growth in memory area. Hence, the memory
access determines the serial symbol rate.

LDPC DECODER ARCHITECTURES
In LDPC decoding, there is no interdependence
between simultaneous variable-to-check and
check-to-variable computations. Parallel LDPC
decoders will benefit from throughput and power
efficiency, but will require the implementation of
a large number of processing elements together
with message passing within a congested routing
network. In order to ease the difficulty in rout-
ing, a common approach is to partition a design
into smaller subsets with minimum overlap.
However, due to irregularity in the parity check
matrix, design partitioning is difficult and yields
little advantage. An example of a parallel LDPC
decoder [7] (Fig. 3a) for a 1024-bit rate-1/2 code
requires 1536 processing elements with an excess
of 26,000 interconnect wires to carry the mes-
sages between the processing elements. Area of
implementation and interconnect routing are the
two major issues inhibiting the implementation
of parallel architectures.

In a serial LDPC decoder (Fig. 3b), the task
of message computation is serialized into a small

� Figure 2. Parallel architecture for windowed MAP.
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number of processing elements, resulting in a
latency of several thousand cycles. Furthermore,
the large expansion property of LDPC codes
with good asymptotic performance leads to stalls
in processing between the rounds of iteration
due to data dependencies. In order to capitalize
on all hardware resources, it is more efficient to
schedule all available processing elements to
compute the messages in each round of decod-
ing, storing the output messages temporarily in
memory, before proceeding to a subsequent
round of computations. Although serial architec-
tures result in less area and routing congestion,
they lead to dramatically increased memory
requirements. The size of the memory required
is dependent on the total number of edges in the
particular code design, which is the product of
the average edge degree per bit node and the
number of bits in each block of LDPC code. For
example, a serial implementation of a rate-8/9
4608-bit LDPC decoder with variable nodes with
an average edge degree of four will have more
than 18,000 edges in the underlying graph. It
would have to perform 37,000 memory read or
write operations for each iteration of decoding,
which limits the total throughput. This is in con-
trast to a turbo decoder, whose memory require-
ment is largely dictated by the size of the
interleaver required to store one block of mes-
sages. Given the same block size, the memory
requirements for the serial implementation of an
LDPC decoder are several times larger than that
of a turbo decoder.

PLATFORMS FOR
ITERATIVE DECODING

Table 1 lists some recent communication stan-
dards specifying the use of iterative decoding for
forward error correction. Iterative codes are also
currently being considered for high-performance
storage applications that require about 1 Gb/s
throughput as well as 10 Gb/s optical communi-
cations. Iterative decoding for most applications
can be implemented on a number of platforms.
The choice of platform is dictated primarily by
performance constraints such as throughput,
power, area, and latency, as well as two often
understated and intangible considerations: flexi-
bility and scalability. Flexibility of a platform
represents the ease with which an implementa-
tion can be updated for changes in the target
specification. Scalability captures the ease of
using the same platform for extensions of the
application that may require higher throughputs,
increased code block sizes, higher edge degrees
for low-density parity check codes, or increased
number of states in the constituent convolutional
code of the turbo system.

General-purpose microprocessors and digital
signal processors (DSPs) have a limited number
of single-instruction-per-cycle execution units
but provide the most flexibility. These platforms
naturally implement the serial architecture for
iterative decoding. Microprocessors and DSPs
are used as tools by the majority of researchers

� Figure 3. a) Parallel vs. b) serial architectures for LDPC decoding.
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� Table 1. Standard specifications for turbo decoding.

Standard Application Iterative code Max. throughput

DVB-RCS Digital video broadcast Parallel conc. of 8-state conv. codes 68 Mb/s (rate 7/8)

IEEE 802.16 Wireless networking (MAN) Turbo product codes 25 Mb/s (rate 5/6)

3GPP UMTS Wireless cellular Parallel conc. of 8-state conv. codes 2 Mb/s (rate 1/3)

CCSDS Space telemetry Parallel conc. of 16-state conv. codes 384 kb/s (rate 1/2)
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in this field to design, simulate, and perform
comparative analysis of iterative codes. Perform-
ing simulations with BERs below 10–6, however,
is a lengthy process on such platforms. Recently,
there has been increased momentum in the use
of DSPs in third-generation (3G) wireless
devices. The specifications require turbo decod-
ing at throughputs up to 2 Mb/s, which is an
order of magnitude faster than rates typically
achievable by a handful of execution units.
Advanced DSPs include a turbo coprocessor,
which is essentially an ASIC accelerator with
limited programmability.

Field programmable gate arrays (FPGAs)
offer more opportunities for parallelism with
reduced flexibility. However, fully parallel
decoders face mismatch between the routing
requirements of the programmable interconnect
fabric and edges in a factor graph. FPGAs are
intended for datapath-intensive designs, and
thus have an interconnect grid optimized for
local routing. The disorganized nature of an
LDPC or interleaver graph, for instance,
requires global and significantly longer routing.
Existing implementations of iterative decoders
on FPGAs continue to circumvent this problem
by using time-shared hardware and memories in
place of interconnect. This serial method cur-
rently limits the internal throughput of turbo
decoders to 6.5 Mb/s [8] and LDPC decoders to
56 Mb/s [9].

Custom ASICs are well suited for direct
mapped architectures, offering even higher per-
formance with further reduction in flexibility. An
LDPC decoder [7] implemented in 0.16 µm
CMOS technology achieves 1 Gb/s throughput
by fully exploiting the parallelism in the LDPC
decoding algorithm. The logic density of this
implementation is limited to only 50 percent to
accommodate a large on-chip interconnect. In
addition, the parallel architecture is not easily
scalable to codes with larger block sizes. For
decoding within 0.1 dB of the capacity bound,
block sizes with tens of thousands of bits are
required [10]. With at least 10 times more inter-
connect wires, a parallel implementation will
face imminent routing congestion, and may
exceed viable chip areas.

Current ASIC implementations of turbo
decoders [3] are serial, targeting wireless appli-
cations. Decoding throughput is 2 Mb/s with 10
iterations of the two constituent convolutional
decoders. A high-throughput ASIC turbo
decoder, limited by the interleaver memory
access, should be able to decode at throughputs
over 500 Mb/s.

An alternative form of custom ASIC plat-
form is based on analog signal processing [11].
Initial analog implementations of MAP decoders
have reduced silicon area and achieved high
decoding throughput. Analog decoders operate
in the probability domain, evaluating the sum-
product algorithm in its raw form, as opposed to
operating in the log-probability domain in which
digital decoders operate. Probabilities, repre-
sented as currents in bipolar junction transis-
tors, are multiplied using a six-transistor Gilbert
cell that takes advantage of the exponential
relationship between collector current and base
emitter voltage. Currently, analog MAP

decoders only exist in fully parallel architec-
tures, with small block sizes up to a few hun-
dred bits. For a serial architecture with larger
block sizes, a track-and-hold circuit can be
employed to implement a one-step recursion
similar to the ACS recursion in digital imple-
mentations. Despite their benefits, analog imple-
mentations are sensitive to process and
temperature variations, and difficult to test in
production. Analog circuits are also less scalable
with improvements in process technology. Fig-
ure 4 and Table 2 provide summaries of the
computational platforms and their performance.

IMPACT OF CODE CONSTRUCTION ON
DECODER ARCHITECTURES

The desire for large SNR gains frequently con-
flicts with the requirements for low complexity
and high flexibility of the decoder. In most
classes of iterative decoders, the properties that
dominate the architectural considerations are
size of the block code and number of iterations.
In general, the BER performance of a code
improves as the value of these numbers increase.
However, given a block code with good expan-
sion properties, decoding commences only after
the final symbol in the block is received. A large
block size not only imposes heavy computation-
al and memory requirements on the decoder,
but also leads to extended latencies. Likewise, a
large number of iterations increases decoder
latency and power while lowering effective
throughput. In serial architectures, already slow-
er due to the limited number of processing ele-
ments, each additional iteration requires more
pipelined hardware in order to sustain the
throughput rate. This results in further increase

� Figure 4. Relative comparisons between various architectures on different
platforms for implementation of iterative decoding.
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in area. Decoders that require above 1000 itera-
tions or 107 processing elements [10] are not
suitable for parallel architectures. Large codes
are much more easily mapped onto serial archi-
tectures, but will result in extended decoding
latencies.

TURBO CODES
The properties that are specific to the imple-
mentation of turbo decoders are the code con-
straint lengths of the constituent convolutional
codes, as well as the design of the interleaver.

The constraint length K of a convolutional
code directly affects the number of ACS opera-
tions required for either the forward or back-
ward recursion in the MAP decoder. Turbo
codes that comprise constituent codes with large
constraint lengths have been shown to exhibit
improved abilities to converge to the maximum
likelihood solution. On the other hand, the con-
straint length, K, has an exponential effect on
the area and power dissipation of the decoder,
since the trellis representation has 2K–1 nodes at
each bit instance. Most research in turbo codes
has adopted constituent codes with moderate
constraint lengths of less than five, and focused
on the design of interleavers for performance
improvements. Applications with low power or
high throughput requirements will need to have
low constraint lengths. As an example, the 3G
Partnership Project (3GPP) Universal Mobile
Telecommunications System (UMTS) specifica-
tion uses convolutional codes with a constraint
length of four.

As previously mentioned, the implementation
of the interleaver becomes the throughput bot-
tleneck when routing congestion prevents a
direct-mapped network of interconnects and
requires the use of memory. An example of this
is the interleaver proposed in the original turbo
code (see the article in this issue by C. Berrou),
which has a size of 65536. The use of memory
invokes a design decision over how the addresses
of the memory accesses should be generated.
Random interleavers require that the permuta-

tion addresses be stored in a ROM section. The
size of the memory required for the permutation
sequence is often larger than that required for
storage of the messages. For instance, the inter-
leaver with 65,536 messages would require 16
bits for the memory addresses, which is up to
four times larger than the 4 or 5 bits typically
used for fixed-point representation of the mes-
sages in turbo decoders.

A deterministic interleaver, on the other
hand, presents possibilities of address generation
on the fly, thus eliminating the need for ROM.
For example, the permutation sequence can be
linearly produced using just additions and modu-
lo divisions, as shown in [12]. This simplification
comes at some cost in BER performance. Com-
pared with an S-random interleaver, a bench-
mark often used in interleaver designs, a
degradation of 0.5 dB is reportedly measured at
a BER of 10–5. While more sophisticated deter-
ministic interleavers exist, the cost of additional
area and power usually offsets any benefits of a
complex compute-on-the-fly strategy.

LDPC CODES
In terms of implementation, LDPC codes can be
differentiated along the lines of whether the
code has a structured graph, a uniform edge
degree (regular codes), and the maximum edge
degree of both check and variable nodes.

The structure of an LDPC graph, analogous
to the structure of the interleaver in a turbo
code, directly affects the implementation of the
message-passing network. A graph with disor-
ganized connections will lead to either routing
congestion in parallel architectures or address
indexing issues in serial architectures. Howev-
er, there are examples of LDPC codes with
highly structured and regular graphs. These
codes are based on properties of finite fields
[5] and exhibit a natural cyclic structure, which
can be exploited to allow the use of fast and
small shift registers. Column splitting on these
codes also yields added parallelism between
memory accesses in serial architectures with a

� Table 2. A summary of platforms for iterative decoders.

Platform Architecture Example implementations Implementation difficulty

Microprocessor/ DSP Serial 133 kb/s rate-1/2 LDPC decoder on DSP [15] Limited number of processing units (ALU)

FPGA Parallel None Mismatch of interconnect requirements and
capabilities

FPGA Serial 56 Mb/s rate-1/2 LDPC decoder [9] Control for memory access
6.5 Mb/s 8-state MAP decoder [8] (3 windows)

Custom ASIC Parallel 1 Gb/s rate-1/2 LDPC decoder [7 Routing congestion; not scalable

1024-bit code block

Custom ASIC Serial 2 Mb/s 8-state MAP decoder [3] Interleaver addresses computed on the fly.
Implementation was optimized for
low power. 500 Mb/s high throughput
MAP decoder is theoretically feasible

Custom ASIC (Analog) Parallel Analog MAP decoder in BiCMOS Interleavers not included.
technology [11] Sensitive to process and temperature variations.

Difficult to test in production. Not scalable with
improvements in process technology
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limited number of parallel processing elements
[13]. The demonstrated rate-1/2 (64,32) code
has a block size of 8190 bits, and achieves a
BER of 10–5 at 1.8 dB away from the theoreti-
cal bound.

The edge degree of a code corresponds to the
number of inputs or outputs on the processing
elements. This property has similar effects as the
constraint length of a constituent convolutional
code in turbo systems because it determines the
relationship between a variable node and its
adjacent neighbors. Practical implementations of
LDPC decoders, particularly parallel ones, bene-
fit from regular code with a small maximum
edge degree in order to avoid detrimental arith-
metic precision effects and the complexity of col-
lating a large number of inputs and outputs at
the processing elements. LDPC codes generated
from the method of density evolution [10] face
these issues because the codes have maximum
variable degrees on the order of a hundred. To
avoid truncation of results, the output of a 100-
input adder would require at least 7 bits more
than the wordlength of its inputs, effectively
doubling the wordlength of a 5-bit decoder
implementation. In addition, a parallel architec-
ture of the decoder would have to emanate at
least 100 signal buses from some of the process-
ing elements. Despite one of the best reported
performances, at only 0.0045 dB away from the
theoretical Shannon bound, such codes are not
particularly suited to the realization of a parallel
VLSI decoder.

In serial LDPC decoder architectures, the
edge degree of the variable nodes determines
the total number of edges in the graph, which
affects the size of the memory required, as pre-
viously noted. A method for reduction of the
memory requirement in LDPC decoders
involves a combination of a staggered decoding
schedule and an approximation of the variable-
to-check message computation [13]. A small
number of processing elements compute a seri-
al stream of check-to-variable messages. Unlike
traditional decoding methods, each variable-to-
check message is approximated by the log-like-
lihood ratio of the variable, and marginalization
of the variable-to-check messages is not per-
formed. The log-likelihood ratio is updated
(incremented) as soon as there is any available
corresponding check-to-variable message. Com-
pared to the classical message-passing algo-
rithm, this method allows decoders with area or
power constraints that limit the number of iter-
ations to five or less to benefit from more than
75 percent reduction in memory requirement,
at the expense of less than 0.5 dB loss in coding
gain. The decoder has a memory requirement
dependent only on the total number of variable
nodes in the block. It is noted that the stag-
gered decoding will  not achieve the same
asymptotic results as LDPC decoding under
belief propagation.

In order to produce viable real-time iterative
decoding, future decoders have to aggressively
exploit the power and throughput advantages of
parallel architectures. However, these have to be
preceded by techniques in code construction that
address the complexity of routing parallel imple-
mentations. Codes suitable for use in communi-

cations receivers may have to trade off the SNR
performance for improved partitioning proper-
ties that would assist with the routing problem.
An example in this direction makes use of simu-
lated annealing to minimize the total length of
interconnect while maximizing the total girth of
the graph [14].

CONCLUSION
Implementations of iterative codes have to
address the arithmetic requirements for a vari-
ety of sum-product algorithms and provide a
network for message passing. While the com-
putational requirements of iterative decoders
have received attention in the research on iter-
ative decoder implementations, the realization
of the network to facilitate message passing
has been less emphasized. In general,  the
underlying graphs describing interleavers used
in turbo codes and the parity check pattern in
LDPC codes have an unstructured nature,
which leads to routing congestion if they are
directly mapped into a network of intercon-
nects. These issues are not only specific to
turbo and LDPC codes, on which this article
has primarily focused, but also extend to other
iterative codes, such as block turbo codes and
tornado codes.

Routing congestion can be addressed through
serial architectures with limited parallelism and
through the use of memory arrays to temporarily
store messages. However, besides a large memo-
ry requirement, serial architectures also place
the memory access in the critical path of the
decoder system, thus degrading the overall
throughput by as much as an order of magni-
tude. The choice between a serial or parallel
implementation is tied to the trade-off between
memory or interconnect complexity concerns.

Historically, considerations for decoder
implementations have always been preceded by
efforts in code construction with the sole pur-
pose of improving coding gain. Methods based
on density evolution or expander graphs have
shown promising BER performance, but lead to
intractable implementation issues. Future practi-
cal implementations of high-throughput iterative
decoders will require code construction tech-
niques that trade off the error correcting perfor-
mance for reduced implementation complexity.
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